损失函数

维基百科,自由的百科全书
跳到导航 跳到搜索

最优化统计学计量经济学决策论机器学习计算神经科学的领域中,损失函数成本函数是指一种将一个事件(在一个样本空间中的一个元素)映射到一个表达与其事件相关的经济成本或机会成本的实数上的一种函数,借此直观表示的一些"成本"与事件的关联。一个最佳化問題的目标是将损失函数最小化。[1]一个目标函数通常为一个损失函数的本身或者为其负值。当一个目标函数为损失函数的负值时,目标函数的值寻求最大化。

在统计学中,损失函数的作用是估计参数

  1. ^ 5 Regression Loss Functions All Machine Learners Should Know. Heartbeat. 2018-06-05 [2018-10-23].