数理社会学

维基百科,自由的百科全书
跳转至: 导航搜索

数理社会学是运用数学构建社会学理论的学科。数理社会学的目标是将那些在直觉上很明显但并未形成正式观点的社会学理论,用正式的术语表达出来。这种做法的好处包括增强理论的明确性以及用数学找出直觉不能得出的理论内涵。数理社会学所偏好的研究方式可以概括为:“建立一个数学模型”。这意味着针对一些社会现象提出具体假设,用数学语言进行表达,然后为其提供基于经验的阐释。还意味着推导所建立模型的特性,并将它和相关的经验数据进行比较。社会网络分析是这个子领域对社会学整体和整个科学界所做出的最著名的贡献。 数理社会学中的模型通常能帮助社会学家搞懂如何通过当地可预测的交互作用推导出全球的社会结构模式[1]

参考资料[编辑]

延伸阅读[编辑]

  • Berger, Joseph. 2000. "Theory and Formalization: Some Reflections on Experience." Sociological Theory 18(3):482-489.
  • Berger, Joseph, Bernard P. Cohen, J. Laurie Snell, and Morris Zelditch, Jr. 1962. Types of Formalization in Small Group Research. Houghton-Mifflin.
  • Coleman, James S. 1964. An Introduction to Mathematical Sociology. Free Press.
  • _____. 1990. Foundations of Social Theory. Harvard University Press.
  • Edling, Christofer R. 2002. "Mathematics in Sociology," Annual Review of Sociology.
  • Fararo, Thomas J. 1973. Mathematical Sociology. Wiley. Reprinted by Krieger, 1978.
  • _____. 1984. Editor. Mathematical Ideas and Sociological Theory. Gordon and Breach.
  • Helbing, Dirk. 1995. Quantitative Sociodynamics. Kluwer Academics.
  • Lave, Charles and James March. 1975. An Introduction to Models in the Social Sciences. Harper and Row.
  • Nicolas Rashevsky.: 1965, The Representation of Organisms in Terms of Predicates, Bulletin of Mathematical Biophysics 27: 477-491.
  • Nicolas Rashevsky.: 1969, Outline of a Unified Approach to Physics, Biology and Sociology., Bulletin of Mathematical Biophysics 31: 159-198.
  • Rosen, Robert. 1972. Tribute to Nicolas Rashevsky 1899-1972. Progress in Theoretical Biology 2.
  • Leik, Robert K. and Barbara F. Meeker. 1975. Mathematical Sociology. Prentice-Hall.
  • Simon, Herbert A. 1952. "A Formal Theory of Interaction in Social Groups." American Sociological Review 17:202-212.
  • Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applications. Cambridge University Press.
  • White, Harrison C. 1963. An Anatomy of Kinship. Prentice-Hall.

外部链接[编辑]