迪恩數

维基百科,自由的百科全书
跳转至: 导航搜索

迪恩數DDeDn)是流體力學中的無因次量,會用在彎管及彎曲渠道的流體研究中,得名自1920年代研究彎曲流場的英國科學家威廉·雷金納德·迪恩英语W. R. Dean

定義[编辑]

迪恩數的定義如下:

  • 為流體密度
  • 為流體的粘度
  • 是軸向的速度值
  • 為彎管直徑(若截面不是圓形,可以用等效直徑,請參考雷諾數
  • 是彎管的曲率半徑

迪恩數和雷諾數(基於在直徑d的管內流速為V的流體)及曲率平方根的乘積成正比[1]

迪恩方程[编辑]

迪恩數出現在迪恩方程中,這是針對牛顿流体環面管中的軸向均勻流,曲率效應較小 () 時針對纳维-斯托克斯方程的近似。

此處使用正交座標系 ,其單位向量和彎管的中線對齊,延著中線方向,和中線平面垂直,而為副法線.若軸向流是因為壓力梯度而產生,其軸向速度 除以 ,跨流線的速度 除以 ,跨流線的壓力除以,而長度除以曲率半徑。

利用上述的無因次變數及座標,迪恩方程式可以用下式表示[2]

其中

實質導數英语convective derivative

迪恩數D是上述系統中唯一的參數,也包括了曲率效應的第一階效應在內,若要考慮更高階的效應,需要引入其他的參數。

若曲率的影響不大時(D比較小),迪恩方程可以用迪恩數的级数展开來表示. 此處在 (Dennis & Ng 1982)時都還是穩定的[3]。若D值較大,有許多不同的解,其中有許多是不穩定的。

參考資料[编辑]

  1. ^ Chapter5 Geometry and Flow p.3 互联网档案馆存檔,存档日期2016-03-04.
  2. ^ Mestel, J. Flow in curved pipes: The Dean equations, Lecture Handout for Course M4A33, Imperial College.
  3. ^ Dennis, C. R.; Ng, M. Dual solutions for steady laminar-flow through a curved tube. Q. J. Mech. Appl. Math. 1982, 35: 305. doi:10.1093/qjmam/35.3.305.