靈敏度和特異度

维基百科,自由的百科全书
跳转至: 导航搜索

靈敏度特異度統計學中用來表徵二項分類測試特徵的數據。

  • 靈敏度(Sensitivity,也稱為真陽性率)是指實際為陽性的樣本中,判斷為陽性的比例(例如真正有生病的人中,被醫院判斷為有生病者的比例),計算方式是真陽性除以真陽性+偽陰性(實際為陽性,但判斷為陰性)的比值。
  • 特異度(Specificity,也稱為真陰性率)是指實際為陰性的樣本中,判斷為陰性的比例(例如真正未生病的人中,被醫院判斷為未生病者的比例),計算方式是真陰性除以真陰性+偽陽性(實際為陰性,但判斷為陽性)的比值。

靈敏度可以作為避免偽陰性的量化指標,而特異度可以作為避免偽陽性的量化指標。對於任何測試而言,都需要在靈敏度及特異度之間進行取捨。例如機場安檢英语Airport security中對於登機人員是否有攜帶危險物品的檢查,掃描器可能會在檢查到像皮帶頭或鎖匙等低危險物品時觸發(低特異度),但會減少實際攜帶了危險物品,但沒有檢查到的可能性(高靈敏度)。這個取捨可以用ROC曲线(接收者操作特徵曲線)來表示。完美的分類器可以達到100%的靈敏度(所有生病的人都會檢測為生病),及100%的特異度(沒有一個健康不生病的人會被檢測為生病)。但是理論上所有的分類器都會有最小的誤差範圍,稱為贝叶斯错误率

舉例[编辑]

在一個100人的樣本中,有10人事實上患有A病(陽性),經過檢測後,9人判定患有A病(真陽性),而1人判定並不患有A病(假陰性); 另外的90人被认为并不患有A病(陰性),然後經過檢測後,其中的5人被判定患有A病(假陽性),另外的85人判定不患有A病(真陰性)。

靈敏度=真陽性/(真陽性+假陰性)=9/(9+1)=90%;

特異度=真陰性/(真陰性+假陽性)=85/(85+5)=94.4%.

此處,靈敏度即為在患病人群中,成功確證患病的概率;而特異度即為在不患病的人群中,成功排除患病的概率。

相關條目[编辑]