跳转到内容

增长的极限

维基百科,自由的百科全书

这是本页的一个历史版本,由Mewaqua留言 | 贡献2020年2月20日 (四) 11:15 指数储量指标编辑。这可能和当前版本存在着巨大的差异。

1972年版封面

增长的极限》是罗马俱乐部于1972年发表的、对世界人口快速增长的模型分析结果。丹尼斯·米都斯(Dennis L. Meadows)主笔。这本书用World3模型对地球和人类系统的互动作用进行仿真[1],反映了马尔萨斯在1798年发表的《人口学原理》中表达的观点。

丹尼斯·米都斯和约尔根·兰讷斯(Jørgen Randers)对最初的版本进行了更改。1993年,他们在本书出版20周年之际,发表了新版本《超越极限》。最新版本由Chelsea Green出版社出版于2004年6月1日,标题是《增长的极限:30年后的更新》。

指数储量指标

本书讨论的一个重要观点是:如果资源消耗指标持续增长,那么可开采指标就不能用现有已知的储量除以目前年消耗量来结算,这是生成静态指标典型的算法。例如,在1972年,铬的储存量是7.75亿吨,年开采量是185万吨。静态指标为418年(775/1.85),但铬的消费量年增长率是2.6%。如果保持稳定的消耗率,并且考虑年增长率,这一资源只能开采93年。

书中,他们罗列了一些资源的指数指标和5倍指数储量指标:

资源 静态指标(年) 增长率 指数指标(年) 5倍指数储量指标(年)
420 2.6 95 154
11 4.1 9 29
240 1.8 93 173
石油 31 3.9 20 50

静态储量指标假设使用量是常数,指数储量指标假设使用量的年增长率是常数。对于石油,两个指标均不正确,因为经历过石油输出国组织的石油禁运后,次年的产量增加了。

指数指标经常被错误地引用,怀疑论环保份子声称:“《增长的极限》告诉我们,1992年石油将被消耗怠尽。”而实际上,《增长的极限》在上述表格中所说的现有储量(假设没有发现新的油田)在1992年消耗完,是建立在指数指标为常数的假设之上的。

批评

《增长的极限》一发表便引起争议。耶鲁经济学者亨利·华利克在1972年3月13日的《新闻周刊》编者按中称此书为“不负责任的一派胡言”,是华盛顿博物馆学者以夸大其词来哗众取宠,模型里的许多变量设置没有足够的依据。华利克说,“模型的数字完全来自作者的臆想,他们从来没发表所使用的方程式。”两年后的1974年,米都斯才发表模型的具体细节。

此书的争议往往是批评者认为作者的错误预言;而作者极端支持者则辩护说,实际上他们并未做精确的预测,书中的预言只是建立在各种假设上的估计。

尽管如此,今天许多人认为这本书传递的总体信息是准确的:地球资源是有限的,因此,无可避免地会有一个自然的极限。

注解

  1. ^ 此模型以仿真程序语言DYNAMO运行

参考资料

  • "To Grow or not to Grow", 新闻周刊, 3月13日, 1972年, 102-103页
  • Donella H. Meadows, Dennis L. Meadows, Jørgen Randers, and William W. Behrens III. (1972).
    The Limits to Growth. New York: University Books. ISBN 0-87663-165-0
  • Henry C. Wallich, "More on Growth", 新闻周刊, 3月13日, 1972年, 86页

标准书号

参见

外部链接