跳转到内容

条形码

本页使用了标题或全文手工转换
维基百科,自由的百科全书
128B规格条形码,可扫描出Wikipedia字样
可口可乐条形码造型为瓶身曲线

条形码或称条码(英语:barcode),是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案。条形码可以标出物品的生产国、制造厂家、商品名称、生产日期、图书分类号、邮件起止地点、类别、日期等信息,因而在商品流通、图书管理、邮政管理、银行系统等许多领域都得到了广泛的应用。

条码的识别原理

[编辑]

要将按照一定规则编译出来的条形码转换成有意义的信息,需要经历扫描和译码两个过程。物体的颜色是由其反射光的类型决定的,白色物体能反射各种波长的可见光,黑色物体则吸收各种波长的可见光,所以当条形码扫描器光源发出的光在条形码上反射后,反射光照射到条码扫描器内部的光电转换器上,光电转换器根据强弱不同的反射光信号,转换成相应的电信号。根据原理的差异,扫描器可以分为光笔、CCD激光三种。电信号输出到条码扫描器的放大电路增强信号之后,再送到整形电路将模拟信号转换成数字信号。白条、黑条的宽度不同,相应的电信号持续时间长短也不同。然后译码器通过测量脉冲数字电信号0、1的数目来判别条和空的数目,通过测量0、1信号持续的时间来判别条和空的宽度。此时所得到的数据仍然是杂乱无章的,要知道条形码所包含的信息,则需根据对应的编码规则(例如:EAN-8码),将条形符号换成相应的数字、字符信息。最后,由计算机系统进行数据处理与管理,物品的详细信息便被识别了。

条形码的扫描

[编辑]
条形码扫描仪
扫描中的条形码

条形码的扫描需要扫描器,扫描器利用自身源照射条形码,再利用光电转换器接受反射的光线,将反射光线的明暗转换成数字信号。不论是采取何种规则印制的条形码,都由静区、起始字符、数据字符与终止字符组成。有些条码在数据字符与终止字符之间还有校验字符。

  • 静区:顾名思义,不携带任何信息的区域,起提示作用。
  • 起始字符:第一位字符,具有特殊结构,当扫描器读取到该字符时,便开始正式读取代码了。
  • 数据字符:条形码的主要内容。
  • 校验字符:检验读取到的数据是否正确。不同编码规则可能会有不同的校验规则。
  • 终止字符:最后一位字符,一样具有特殊结构,用于告知代码扫描完毕,同时还起到只是进行校验计算的作用。

为了方便双向扫描,起止字符具有不对称结构。因此扫描器扫描时可以自动对条码信息重新排列。

条码扫描器有光笔、CCD、激光三种:

  • 光笔:最原始的扫描方式,需要手动移动光笔,并且光笔笔尖部分需要与条形码直接接触。
  • CCD:以CCD作为光电转换器,LED作为发光光源的扫描器。在一定范围内,可以实现自动扫描。并且可以阅读各种材料、不平表面上的条码,成本也较为低廉。但是与激光式相比,扫描距离较短。
  • 激光:以激光作为发光源的扫描器。又可分为线型、全角度等几种。
    • 线型:多用于手持式扫描器,范围远,准确性高。
    • 全角度:多为卧式,自动化程度高,在各种方向上都可以自动读取条码。

条码的优越性

[编辑]
可揭除的条形码
  • 可靠性强。条形码的读取准确率远远超过人工记录,平均每15000个字符才会出现一个错误。
  • 效率高。条形码的读取速度很快,相当于每秒40个字符
  • 成本低。与其它自动化识别技术相比较,条形码技术仅仅需要一小张贴纸和相对构造简单的光学扫描仪,成本相当低廉。
  • 易于制作。条形码的编写很简单,制作也仅仅需要印刷,被称作为“可印刷的计算机语言”。
  • 易于操作。条形码识别设备的构造简单,使用方便。
  • 灵活实用。条形码符号可以手工键盘输入,也可以和有关设备组成识别系统实现自动化识别,还可和其他控制设备联系起来实现整个系统的自动化管理。

条形码的发展历史

[编辑]

条形码类型

[编辑]

线性条形码

[编辑]

第一代,“一维”的条码是由线条和空间的各种宽度,创建特定的模式。

例如 符号 Continuous or discrete 条纹宽度 用途
澳大利亚邮政条形码 Discrete 4 bar heights 一个澳大利亚邮政条形码作为一个商业上的答复付费信封。
Codabar Discrete Two 在图书馆和血库和airbills使用的旧格式(过时)
Code 25 – Non-interleaved 2 of 5 Continuous Two 产业
Code 25 – Interleaved 2 of 5 Continuous Two 批发,图书馆国际标准ISO / IEC 16390
Code11 Discrete Two 电话(过时)
Farmacode or Code 32 Discrete Two 意大利 Pharmacode 成为-使用代码39 (无国际标准)
Code39 Discrete Two 其他 - 国际标准ISO / IEC 16388
Code49 Continuous Many 各个
Code93 Continuous Many 各个
Code128 Continuous Many 其他 - 国际标准ISO / IEC 15417
CPC Binary Discrete Two
DX film edge barcode Neither Tall/short Color print film
EAN-2 Continuous Many 插件代码(杂志), GS1 -approved -不是自己的符号-要只用一个EAN / UPC根据ISO / IEC 15420使用
EAN-5 Continuous Many 插件代码(书), GS1 -approved -不是自己的符号-要只用一个EAN / UPC根据ISO / IEC 15420使用
EAN-8, 欧洲商品条形码 Continuous Many 全球零售, GS1 -approved -国际标准ISO / IEC 15420
EAN-13, 欧洲商品条形码 Continuous Many 全球零售, GS1 -approved -国际标准ISO / IEC 15420
Facing Identification Mark Discrete Two 美国邮政业务恢复邮件
GS1-128(前身为UCC/ EAN-128),误称为EAN·UCC的128和128构仅仅是128码(ISO/ IEC15417)的应用。 Continuous Many 各种,GS1批准 - 只是应用程序代码128(ISO/ IEC15417)使用和mh10.8.2 AI的数据结构它不是一个独立的符号
GS1的的 DataBar 的前身缩减码(RSS) Continuous Many 各种,GS1批准
Intelligent Mail barcode Discrete 4 bar heights 美国邮政服务,取代了 POSTNET 和 PLANET 符号(原名 OneCode )
ITF-14 Continuous Two 非零售包装的水平,GS1批准-仅仅是一个交错2/5码(ISO/ IEC16390)和一些额外的规格,根据GS1通用规范
JAN Continuous Many 用于日本,类似和兼容EAN-13(ISO/ IEC15420)
日本邮政条形码 barcode Discrete 4 bar heights 日本邮政
KarTrak ACI Discrete Coloured bars 用于在北美铁路车辆装备
MSI Continuous Two 用于仓库货架和库存
Pharmacode Discrete Two 药品包装(无国际标准)
PLANET Continuous Tall/short 美国邮政服务(无国际标准)
Plessey Continuous Two 产品目录,商店的货架,库存(无国际标准)
PostBar Discrete 4 bar heights 加拿大邮局
POSTNET Discrete Tall/short 美国邮政服务(无国际标准)
RM4SCC / KIX Discrete 4 bar heights 皇家邮政/PostNL
RM Mailmark C Discrete 4 bar heights 皇家邮政
RM Mailmark L Discrete 4 bar heights 皇家邮政
Telepen Continuous Two 图书馆(英国)
通用产品代码 Continuous Many 全球零售,-GS1批准的国际标准ISO/ IEC15420

矩阵(二维)条形码

[编辑]

矩阵码,也被称为二维码或二维码,是一种以二维矩阵呈现数字信息的方式。它类似于线性(一维)条形码,但可以表示更多数据。

参考文献

[编辑]

外部链接

[编辑]

参见

[编辑]