# 标准摩尔熵

## 计算

${\displaystyle S_{T}=\int _{0}^{T}{\frac {C_{P}{\mbox{(s)}}}{T}}dT=\int _{0}^{T}C_{P}{\mbox{(s)}}d{\mbox{ln}}T}$

${\displaystyle S^{\circ }=\int _{0}^{298.15}{\frac {C_{P}{\mbox{(s)}}}{T}}dT}$

0 K至298.15 K之间存在相变，例如发生熔化的情况下，需要加上熔化熵${\displaystyle \Delta S_{fus}={\frac {\Delta H_{fus}}{T_{fus}}}}$

${\displaystyle S^{\circ }=\int _{0}^{T_{fus}}{\frac {C_{P}{\mbox{(s)}}}{T}}dT+{\frac {\Delta H_{fus}}{T_{fus}}}+\int _{T_{fus}}^{298.15}{\frac {C_{P}{\mbox{(l)}}}{T}}dT}$

${\displaystyle S^{\circ }=\int _{0}^{T_{fus}}{\frac {C_{P}{\mbox{(s)}}}{T}}dT+{\frac {\Delta H_{fus}}{T_{fus}}}+\int _{T_{fus}}^{T_{vap}}{\frac {C_{P}{\mbox{(l)}}}{T}}dT+{\frac {\Delta H_{vap}}{T_{vap}}}+\int _{T_{vap}}^{298.15}{\frac {C_{P}{\mbox{(g)}}}{T}}dT}$

Ne(g) 146.328

## 参考文献

1. ^ D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, R.I. Nuttal, K.L. Churney and R.I. Nuttal, The NBS tables of chemical thermodynamics properties, J. Phys. Chem. Ref. Data 11 Suppl. 2 (1982).