格雷码
格雷码(循环二进制单位距离码)是任意两个相邻数的代码只有一位二进制数不同的编码,它与奇偶校验码同属可靠性编码。
简介
[编辑]格雷码(Gray code)是由贝尔实验室的Frank Gray在1940年提出,用于在PCM(脉冲编码调变)方法传送讯号时防止出错,并于1953年三月十七日取得美国专利。格雷码是一个数列集合,相邻两数间只有一个位元改变,为无权数码,且格雷码的顺序不是唯一的。
格雷码能避免讯号传送错误的原理
[编辑]传统的二进位系统例如数字3的表示法为011,要切换为邻近的数字4,也就是100时,装置中的三个位元都得要转换,因此于未完全转换的过程时装置会经历短暂的,010,001,101,110,111等其中数种状态,也就是代表著2、1、5、6、7,因此此种数字编码方法于邻近数字转换时有比较大的误差可能范围。格雷码的发明即是用来将误差之可能性缩减至最小,编码的方式定义为每个邻近数字都只相差一个位元,因此也称为最小差异码,可以使装置做数字步进时只更动最少的位元数以提高稳定性。 数字0~7的编码比较如下:
十进位 格雷码 二进位
0 000 000 1 001 001 2 011 010 3 010 011 4 110 100 5 111 101 6 101 110 7 100 111
直接排列
[编辑]以二进制为0值的格雷码为第零项,第一项改变最右边的位元,第二项改变右起第一个为1的位元的左边位元,第三、四项方法同第一、二项,如此反复,即可排列出n个位元的格雷码。
镜射排列
[编辑]n位元的格雷码可以从n-1位元的格雷码以上下镜射后加上新位元的方式快速的得到,如右图所示一般。
二进位数转格雷码
[编辑](假设以二进制为0的值做为格雷码的0)
G:格雷码 B:二进制码 n:正在计算的位
根据格雷码的定义可得:
G(n) = B(n+1) XOR B(n)
即
G(n) = B(n+1) + B(n)
自低位至高位运算即可,无需考虑进位,例略。
2位元格雷码
00 01 11 10 |
3位元格雷码
000 001 011 010 110 111 101 100 |
4位元格雷码
0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000 |
4位元2进制原始码
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 |
格雷码转二进位数
[编辑]由于G(n) = B(n+1) + B(n)
故而B(n) = B(n+1)-G(n)
自高位至低位运算即可,无需考虑借位。
例:
格雷码0111,为4位数,故设二进制数自第5位至第1位分别为:0 b3 b2 b1 b0。
b3= 0-0 =0
b2=b3-1=0-1=1
b1=b2-1=1-1=0
b0=b1-1=0-1=1
因此所转换为之二进位码为0101
应用
[编辑]和格雷码有相同数学模式的玩具
[编辑]中国的古老益智玩具九连环有著和格雷码完全相同的数学模式,外国一款名为spin out的玩具也是运用相同的数学模式。
参考来源
[编辑]文献
[编辑]- 柯利弗德·皮寇弗; 陈以礼(翻译). The Math Book:From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics [数学之书]. 时报文化. 2013-04-16. ISBN 978-957-135-699-0 (中文(繁体)).