盖根鲍尔多项式
盖根鲍尔多项式
C
n
(
α
)
{\displaystyle C_{n}^{(\alpha )}}
又称超球多项式 ,是定义在区间
[
−
1
,
1
]
{\displaystyle [-1,1]}
上、权函数为
(
1
−
x
2
)
α
−
1
/
2
{\displaystyle (1-x^{2})^{\alpha -1/2}}
的正交多项式 。它是勒让德多项式 和切比雪夫多项式 的推广,又是雅可比多项式 的特殊情况。它以奥地利数学家Leopold Gegenbauer 命名。
盖根鲍尔多项式具有若干性质:
1
(
1
−
2
x
t
+
t
2
)
α
=
∑
n
=
0
∞
C
n
(
α
)
(
x
)
t
n
.
{\displaystyle {\frac {1}{(1-2xt+t^{2})^{\alpha }}}=\sum _{n=0}^{\infty }C_{n}^{(\alpha )}(x)t^{n}.}
C
0
α
(
x
)
=
1
C
1
α
(
x
)
=
2
α
x
C
n
α
(
x
)
=
1
n
[
2
x
(
n
+
α
−
1
)
C
n
−
1
α
(
x
)
−
(
n
+
2
α
−
2
)
C
n
−
2
α
(
x
)
]
.
{\displaystyle {\begin{aligned}C_{0}^{\alpha }(x)&=1\\C_{1}^{\alpha }(x)&=2\alpha x\\C_{n}^{\alpha }(x)&={\frac {1}{n}}[2x(n+\alpha -1)C_{n-1}^{\alpha }(x)-(n+2\alpha -2)C_{n-2}^{\alpha }(x)].\end{aligned}}}
(
1
−
x
2
)
y
″
−
(
2
α
+
1
)
x
y
′
+
n
(
n
+
2
α
)
y
=
0.
{\displaystyle (1-x^{2})y''-(2\alpha +1)xy'+n(n+2\alpha )y=0.\,}
当 α = 1/2, 方程约化为勒让德方程, 盖根鲍尔多项式约化为勒让德多项式 .
C
n
(
α
)
(
z
)
=
(
2
α
)
n
n
!
2
F
1
(
−
n
,
2
α
+
n
;
α
+
1
2
;
1
−
z
2
)
.
{\displaystyle C_{n}^{(\alpha )}(z)={\frac {(2\alpha )_{n}}{n!}}\,_{2}F_{1}\left(-n,2\alpha +n;\alpha +{\frac {1}{2}};{\frac {1-z}{2}}\right).}
(Abramowitz & Stegun p. 561 (页面存档备份 ,存于互联网档案馆 )). 其中(2α)n 为上升阶乘幂 . 具体来说,
C
n
(
α
)
(
z
)
=
∑
k
=
0
⌊
n
/
2
⌋
(
−
1
)
k
Γ
(
n
−
k
+
α
)
Γ
(
α
)
k
!
(
n
−
2
k
)
!
(
2
z
)
n
−
2
k
.
{\displaystyle C_{n}^{(\alpha )}(z)=\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{k}{\frac {\Gamma (n-k+\alpha )}{\Gamma (\alpha )k!(n-2k)!}}(2z)^{n-2k}.}
C
n
(
α
)
(
x
)
=
(
2
α
)
n
(
α
+
1
2
)
n
P
n
(
α
−
1
/
2
,
α
−
1
/
2
)
(
x
)
.
{\displaystyle C_{n}^{(\alpha )}(x)={\frac {(2\alpha )_{n}}{(\alpha +{\frac {1}{2}})_{n}}}P_{n}^{(\alpha -1/2,\alpha -1/2)}(x).}
因而满足罗德里格公式
C
n
(
α
)
(
x
)
=
(
−
2
)
n
n
!
Γ
(
n
+
α
)
Γ
(
n
+
2
α
)
Γ
(
α
)
Γ
(
2
n
+
2
α
)
(
1
−
x
2
)
−
α
+
1
/
2
d
n
d
x
n
[
(
1
−
x
2
)
n
+
α
−
1
/
2
]
.
{\displaystyle C_{n}^{(\alpha )}(x)={\frac {(-2)^{n}}{n!}}{\frac {\Gamma (n+\alpha )\Gamma (n+2\alpha )}{\Gamma (\alpha )\Gamma (2n+2\alpha )}}(1-x^{2})^{-\alpha +1/2}{\frac {d^{n}}{dx^{n}}}\left[(1-x^{2})^{n+\alpha -1/2}\right].}
当n ≠ m 时,对于固定的α 和权函数
w
(
z
)
=
(
1
−
z
2
)
α
−
1
2
.
{\displaystyle w(z)=\left(1-z^{2}\right)^{\alpha -{\frac {1}{2}}}.}
,
盖根鲍尔多项式在区间[−1, 1]上加权正交 (Abramowitz & Stegun p. 774 (页面存档备份 ,存于互联网档案馆 ))
∫
−
1
1
C
n
(
α
)
(
x
)
C
m
(
α
)
(
x
)
(
1
−
x
2
)
α
−
1
2
d
x
=
0.
{\displaystyle \int _{-1}^{1}C_{n}^{(\alpha )}(x)C_{m}^{(\alpha )}(x)(1-x^{2})^{\alpha -{\frac {1}{2}}}\,dx=0.}
归一性:
∫
−
1
1
[
C
n
(
α
)
(
x
)
]
2
(
1
−
x
2
)
α
−
1
2
d
x
=
π
2
1
−
2
α
Γ
(
n
+
2
α
)
n
!
(
n
+
α
)
[
Γ
(
α
)
]
2
.
{\displaystyle \int _{-1}^{1}\left[C_{n}^{(\alpha )}(x)\right]^{2}(1-x^{2})^{\alpha -{\frac {1}{2}}}\,dx={\frac {\pi 2^{1-2\alpha }\Gamma (n+2\alpha )}{n!(n+\alpha )[\Gamma (\alpha )]^{2}}}.}
盖根鲍尔多项式作为勒让德多项式的扩展经常出现在势理论 和谱分析 中. R n 空间中的牛顿势 可以在α = (n − 2)/2情况下展开为盖根鲍尔多项式,
1
|
x
−
y
|
n
−
2
=
∑
k
=
0
∞
|
x
|
k
|
y
|
k
+
n
−
2
C
n
,
k
(
α
)
(
x
⋅
y
)
.
{\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {y} |^{n-2}}}=\sum _{k=0}^{\infty }{\frac {|\mathbf {x} |^{k}}{|\mathbf {y} |^{k+n-2}}}C_{n,k}^{(\alpha )}(\mathbf {x} \cdot \mathbf {y} ).}
当n = 3, 可以得到引力势 的勒让德展开。类似的表达式还有球中泊松核 的展开(Stein & Weiss 1971 ).
当只考虑x 时,
C
n
,
k
(
(
n
−
2
)
/
2
)
(
x
⋅
y
)
{\displaystyle C_{n,k}^{((n-2)/2)}(\mathbf {x} \cdot \mathbf {y} )}
为球谐函数 。
盖根鲍尔多项式在正定函数 理论中亦有涉及。
Abramowitz, Milton; Stegun, Irene Ann (编). Chapter 22 . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55 Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first. Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. 1983: 773. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . .
Bayin, S.S., Mathematical Methods in Science and Engineering, Wiley, 2006 , Chapter 5.
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., Orthogonal Polynomials , Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions , Cambridge University Press, 2010, ISBN 978-0521192255 , MR 2723248
Stein, Elias ; Weiss, Guido , Introduction to Fourier Analysis on Euclidean Spaces, Princeton, N.J.: Princeton University Press, 1971, ISBN 978-0-691-08078-9 .
Suetin, P.K., Ultraspherical polynomials , Hazewinkel, Michiel (编), 数学百科全书 , Springer , 2001, ISBN 978-1-55608-010-4 .