跳至內容

內生性

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

內生性(英語:Endogeneity)在計量經濟學中廣泛指代解釋變量擾動項相關的現象。忽略內生性問題會違背高斯-馬爾可夫定理,導致產生有偏的估計量,[1]以及無效的政策建議。[2]工具變量法是一種緩解內生性問題的常用方法。

內生性問題

[編輯]

如果回歸模型中的解釋變量擾動項相關,那麼最小二乘法的回歸係數的估計量將會是有偏的。但是,如果其中的相關性不是同期的,那麼得出的係數仍然可能是一致的。有許多方法可以幫助糾正上述的偏誤,例如工具變量法赫克曼矯正法英語Heckman correction

靜態模型

[編輯]

以下是內生性問題的常見原因。

遺漏變量

[編輯]

這種情況下,內生性來源於未受到控制的干擾變量,這一變量既和模型中的解釋變量相關,又存在於擾動項中。換言之,這一遺漏變量不僅影響解釋變量,同時還單獨地作用於被解釋變量

假設需要估計的「真實」模型為:

但是在回歸模型中被遺漏了(例如缺乏統計這一變量的手段)。因此,實際估計的模型為:

其中,,也就是說,變量被包含在了擾動項當中。

如果的相關係數不等於0,而且還獨立作用與(意味着),那麼就會與相關。

這一例子中,對於不是外生的,這是由於:對於給定的解釋變量的分布不僅取決於,還受到以及的影響。

測量誤差

[編輯]

假設某個解釋變量無法得到精準的測量。即,真實的變量無法觀察到,實際觀測到的是,其中,是測量誤差(「噪音」)。模型:

需要改寫為實際觀測到的形式:

由於都受到影響,這兩個變量是相關的。結果來看,最小二乘法估計量會被低估。

被解釋變量的測量誤差不會導致內生性,但是會引起擾動項的方差增大。

互為因果

[編輯]

假設兩個變量互相決定(存在「同時性」),兩者的結構方程模型英語Structural equation modeling如下:

對兩個等式的任意一個進行估計都會導致內生性。以前一個等式為例,。在的假設下求解得到:

又假設都與無關,

因此,對兩個等式的估計都會受到內生性影響。

動態模型

[編輯]

內生性問題在時間序列因果分析中影響尤為廣泛。在因果關係中,時期的變量很可能與的其他變量存在跨期關聯。假設解釋變量「蟲害程度」在本期與其他變量都無關,但是與上一期的降雨量和肥料施用量有關。這種情況下,蟲害程度在同期是外生的,但是在時間序列當中卻存在內生性。

另請參閱

[編輯]

參考文獻

[編輯]
  1. ^ Kmenta, Jan. Elements of Econometrics Second. New York: MacMillan. 1986: 652–53. ISBN 0-02-365070-2. 
  2. ^ Antonakis, John; Bendahan, Samuel; Jacquart, Philippe; Lalive, Rafael. On making causal claims: A review and recommendations (PDF). The Leadership Quarterly. December 2010, 21 (6): 1086–1120 [2023-04-01]. ISSN 1048-9843. doi:10.1016/j.leaqua.2010.10.010. (原始內容存檔 (PDF)於2023-04-01). 

進階閱讀

[編輯]