SWI/SNF

維基百科,自由的百科全書
SWIB
擬南芥假定蛋白AT5G14170的SWIB/MDM2結構域的解析結構
鑑定
標誌SWIB
PfamPF02201舊版
InterPro英語InterProIPR003121
SMART英語Simple Modular Architecture Research ToolSWIB
SCOP英語Structural Classification of Proteins1ycr / SUPFAM

分子生物學領域,SWI/SNF(英語:SWItch/Sucrose NonFermentable[1][2]是同時存在於真核生物原核生物中的一種核小體重塑複合物。簡而言之,它們是一群與重塑DNA包裝方式有關的蛋白質。SWI/SNF由多種蛋白構成,這些蛋白往往是SWI及SNF基因(SWI1SWI2/SNF2SWI3SWI5SWI6)的產物以及一些其它多肽[3]。SWI/SNF受DNA刺激後表現出ATP酶活性,利用ATP破壞並重塑核小體的組蛋白DNA之間相互作用的穩定性,不過這種結構改變的精確性質仍未明確。

人體中與SWI/SNF相似的蛋白是BAF(與SWI/SNF-A相似)和PBAF(與SWI/SNF-B相似)。BAF表示「BRG1英語SMARCA4HRBM英語SMARCA2相關因子」,PBAF則表示「聚溴相關的BAF」[4]

作用機理[編輯]

人們發現酵母中的SWI/SNF複合物能使DNA在不同的位置與組蛋白結合成核小體[5]。目前已提出兩種SWI/SNF重塑核小體的機制[6]。一種機制叫做「扭轉擴散」,認為核小體DNA中的扭轉缺陷發生單向擴散,使DNA從進入核小體的地方開始貼着組蛋白八聚體的表面螺旋狀地傳播。另一種機制叫做「突起」或「環再捕獲」,意即DNA在核小體邊緣與之分離,形成一環狀突起。環狀突起在組蛋白八聚體表面像波浪般傳播,最後在核小體內部重新與之結合。這樣DNA就在和組蛋白接觸點數量不變的情況下完成位移[7]。最新研究提出了與「扭轉擴散」機制相牴觸的有力證據,使「環再捕獲」模型更有說服力[8]

腫瘤抑制作用[編輯]

人類的SWI/SNF複合物(mSWI/SNF)對很多人類惡性腫瘤有抑制作用。1998年首先發現它能抑制橫紋肌樣瘤(一種罕見的兒童惡性腫瘤)[9]。隨着DNA測序成本逐漸降低,2010年左右許多腫瘤首次得到測序。其中數項研究表明SWI/SNF對多種惡性腫瘤有抑制作用[10][11][12][13]。對多個測序研究結果的薈萃分析表明,大約20%的人類惡性腫瘤中SWI/SNF存在變異[14]

SWIB/MDM2蛋白結構域[編輯]

SWIB/MDM2蛋白結構域,全稱是SWI/SNF複合物B/MDM2英語MDM2蛋白結構域是相當重要的蛋白結構域。這個蛋白結構域在SWI/SNF複合物B和p53腫瘤抑制蛋白的負向調節蛋白MDM2中均存在。已證明MDM2與SWIB複合物同源[15]

功能[編輯]

SWIB/MDM2蛋白結構域的主要功能是協助基因表達。在酵母中,它表達BADH2英語betaine-aldehyde dehydrogenase、GAL1、GAL4和SUC2等數個基因。該蛋白結構域作用是促進基因轉錄。它有ATP酶的活性,能分解細胞基本能量「貨幣」單位ATP,放出能量以破壞DNA和組蛋白結合的穩定性,從而干擾染色質,並開放可供轉錄因子結合的位點,這就促進了基因的轉錄[16]

系列成員[編輯]

以下列出酵母SWI/SNF系列基因成員以及人類相應的直系同源基因[17]

酵母 人類 功能
SWI1 ARID1A英語ARID1AARID1B英語ARID1B 含有LXXLL核受體結合基序
SWI2/SNF2 SMARCA4英語SMARCA4 ATP依賴的染色質重塑
SWI3 SMARCC1英語SMARCC1SMARCC2英語SMARCC2 功能未知的相似序列
SWP73 SMARCD1英語SMARCD1SMARCD2英語SMARCD2SMARCD3英語SMARCD3 功能未知的相似序列
SWP61 ACTL6A英語ACTL6AACTL6B英語ACTL6B 肌動蛋白樣蛋白

歷史[編輯]

SWI/SNF首先發現於釀酒酵母Saccharomyces cerevisiae)中,以交替(switching,縮寫SWI)型和不發酵蔗糖型(sucrose nonfermenting,縮寫SNF)型交配後所得的酵母命名[16]

另見[編輯]

參考文獻 s[編輯]

  1. ^ Neigeborn L, Carlson M. Genes Affecting the Regulation of SUC2 Gene Expression by Glucose Repression in SACCHAROMYCES CEREVISIAE. Genetics. 1984, 108 (4): 845–58 [2014-01-06]. PMC 1224269可免費查閱. PMID 6392017. (原始內容存檔於2008-08-21). 
  2. ^ Stern M, Jensen R, Herskowitz I. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol. 1984, 178 (4): 853–68. PMID 6436497. doi:10.1016/0022-2836(84)90315-2. 
  3. ^ Pazin MJ, Kadonaga JT. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions?. Cell. 1997, 88 (6): 737–40. PMID 9118215. doi:10.1016/S0092-8674(00)81918-2. 
  4. ^ Nie Z, Yan Z, Chen EH, Sechi S, Ling C, Zhou S, Xue Y, Yang D, Murray D, Kanakubo E, Cleary ML, Wang W. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol. Cell. Biol. April 2003, 23 (8): 2942–52. PMC 152562可免費查閱. PMID 12665591. doi:10.1128/MCB.23.8.2942-2952.2003. 
  5. ^ Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature. August 1999, 400 (6746): 784–7. PMID 10466730. doi:10.1038/23506. 
  6. ^ van Holde K, Yager T. Models for chromatin remodeling: a critical comparison. Biochem. Cell Biol. 2003, 81 (3): 169–72. PMID 12897850. doi:10.1139/o03-038. 
  7. ^ Flaus A, Owen-Hughes T. Mechanisms for nucleosome mobilization. Biopolymers. 2003, 68 (4): 563–78. PMID 12666181. doi:10.1002/bip.10323. 
  8. ^ Zofall M, Persinger J, Kassabov SR, Bartholomew B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 2006, 13 (4): 339–46. PMID 16518397. doi:10.1038/nsmb1071. 
  9. ^ Versteege I, Sévenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. July 1998, 394 (6689): 203–6. PMID 9671307. doi:10.1038/28212. 
  10. ^ Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, Yang W, Heravi-Moussavi A, Giuliany R, Chow C, Fee J, Zayed A, Prentice L, Melnyk N, Turashvili G, Delaney AD, Madore J, Yip S, McPherson AW, Ha G, Bell L, Fereday S, Tam A, Galletta L, Tonin PN, Provencher D, Miller D, Jones SJ, Moore RA, Morin GB, Oloumi A, Boyd N, Aparicio SA, Shih IeM, Mes-Masson AM, Bowtell DD, Hirst M, Gilks B, Marra MA, Huntsman DG. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. October 2010, 363 (16): 1532–43. PMC 2976679可免費查閱. PMID 20942669. doi:10.1056/NEJMoa1008433. 
  11. ^ Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA, Pawlik TM, Daniel HD, Kannangai R, Offerhaus GJ, Velculescu VE, Wang L, Zhou S, Vogelstein B, Hruban RH, Papadopoulos N, Cai J, Torbenson MS, Kinzler KW. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. September 2011, 43 (9): 828–9. PMC 3163746可免費查閱. PMID 21822264. doi:10.1038/ng.903. 
  12. ^ Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A, Pollack JR. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc. Natl. Acad. Sci. U.S.A. January 2012, 109 (5): E252–9. PMC 3277150可免費查閱. PMID 22233809. doi:10.1073/pnas.1114817109. 
  13. ^ Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J, Bignell G, Butler A, Cho J, Dalgliesh GL, Galappaththige D, Greenman C, Hardy C, Jia M, Latimer C, Lau KW, Marshall J, McLaren S, Menzies A, Mudie L, Stebbings L, Largaespada DA, Wessels LF, Richard S, Kahnoski RJ, Anema J, Tuveson DA, Perez-Mancera PA, Mustonen V, Fischer A, Adams DJ, Rust A, Chan-on W, Subimerb C, Dykema K, Furge K, Campbell PJ, Teh BT, Stratton MR, Futreal PA. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. January 2011, 469 (7331): 539–42. PMC 3030920可免費查閱. PMID 21248752. doi:10.1038/nature09639. 
  14. ^ Shain AH, Pollack JR. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE. 2013, 8 (1): e55119. PMC 3552954可免費查閱. PMID 23355908. doi:10.1371/journal.pone.0055119. 
  15. ^ Bennett-Lovsey R, Hart SE, Shirai H, Mizuguchi K. The SWIB and the MDM2 domains are homologous and share a common fold.. Bioinformatics. 2002, 18 (4): 626–30. PMID 12016060. doi:10.1093/bioinformatics/18.4.626. 
  16. ^ 16.0 16.1 Decristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W, Weissman BE. Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies.. J Cell Physiol. 2001, 186 (1): 136–45. PMID 11147808. doi:10.1002/1097-4652(200101)186:1<136::AID-JCP1010>3.0.CO;2-4. 
  17. ^ Collingwood TN, Urnov FD, Wolffe AP. Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J. Mol. Endocrinol. 1999, 23 (3): 255–75. PMID 10601972. doi:10.1677/jme.0.0230255. 

外部連結[編輯]