跳至內容

半單模

維基百科,自由的百科全書

模論中,一個 上的左 若可表為單模的直和,便稱 半單模

本條目中的環皆有乘法單位元素 。對於右模,相應的陳述依然成立。

等價定義

[編輯]

以下陳述彼此等價:

  • 是單模的和。
  • 是其單子模的和。
  • 對每個子模 ,存在子模 使得

性質

[編輯]
  • 是半單模,則其子模與商模亦然。
  • 是半單模,則 亦然。

半單環

[編輯]

藉由環的乘法運算,每個環 都可視為左(或右) -模。若 是半單 -模,則稱 半單環。可以證明:環 是半單左模若且唯若它是半單右模。半單環必然兼為諾特環阿廷環

半單環的角色之一,在於半單環 上的模都是半單模,而且任何單左模都可嵌入 中,成為其極小左理想。這遂大大便利了對 -模結構的研究。

對於非交換環,單環未必是半單環,儘管術語上引人如此聯想。

例子

[編輯]
  • 有限群,則群代數 半單的充要條件是 的特徵不整除 。此結果是有限群表示理論的基石。
  • Artin-Wedderburn 定理給出了半單環的結構:一個環 半單若且唯若它同構於 ,其中每個 皆為除環 表示 上的 矩陣代數。
  • 為域 上之有限維向量空間。則 多項式環 上的左模,結構由 給出。此時 半單的充要條件是 代數閉包 可對角化

文獻

[編輯]
  • N. Bourbaki, Algèbre commutative (1983) Chapitre, VIII et IX, Masson.
  • R.S. Pierce. Associative Algebras. Graduate Texts in Mathematics vol 88.
  • T.Y. Lam. A First Course in Non-commutative Rings. Graduate Texts in Mathematics vol 131.