跳转到内容

调和数

维基百科,自由的百科全书

调和数可以指跟约数和有关的整数欧尔调和数。在数学上,第n个调和数是首n个正整数的倒数和,即

它也等于这些自然数的调和平均值的倒数的倍。它可以推广到正整数的倒数的之和,即

调和级数的性质

[编辑]

根据定义,调和数满足递推关系

它也满足恒等式

计算

[编辑]

对于第n项调和数,有以下公式

设:,由此得到


对于调和数,当n不是太大时,可以直接计算。

当n特别大时,可以进行估算。

因为

其中称为欧拉-马斯刻若尼常数

由此得到

当n越大时,估算越精确。

更精确的估算是

其中是第k项伯努利数


广义调和数

[编辑]

广义调和数满足

由此,我们得到

对于任意两个正整数p和q,并且p<q,我们有

微积分

[编辑]

对于每一个大于0的x,有

由此,得

对于每一个n,有

其他数列

[编辑]

根据定义,其他类似于调和数的数列有以下计算方法: