用户:Kizzard99/沙盒

维基百科,自由的百科全书

高斯随机游走[编辑]

如果随机游走的步长根据正态分布变化,那么它可以用作真实世界时间序列数据的模型,诸如金融市场。用于建模期权价格的布莱克-舒尔斯公式就使用了高斯随机游走作为基础假设。

在这里,每一步的步长是累计正态分布的反函数,0 ≤ z ≤ 1是一个均匀分布的随机数,μ和σ分别是正态分布的均值和标准差。如果μ非零,则随机游走将随线性趋势变化。如果vs是随机游走的起始值,则n步之后的期望值将是vs + nμ。对于μ等于零的特殊情况,在n步后,平移距离的概率分布为N(0, nσ2),其中N() 是正态分布的符号,n是步数,σ同上。

证明:高斯随机游走可以被视为一系列独立同分布的随机变量Xi的总和,每一个变量来自累积正态分布的反函数,它的均值等于零,而σ和原始累积正态分布反函数的σ相同

Z = ,

但两个独立的正态分布随机变量之和的分布,Z = X + Y,由下式给出

X + μY, σ2X + σ2Y) (see here).

在这个例子中,μX = μY = 0 and σ2X = σ2Y = σ2给出

(0, 2σ2)

通过归纳,在步数为n时

Z ~ (0, nσ2).

对均值为零,方差为有限数的任何分布,若随机游走的分布为这样的分布,那么n'步后的均方根平移距离为

但对于高斯随机游走,这只是“n”步后平移距离分布的标准偏差。因此,在μ等于零的前提下,由于均方根平移距离是一个标准差的距离,所以n步后的均方根平移距离落在± σ之间的概率为68.27%。同样,n步后的平移距离有50%的可能性落在± 0.6745σ之间。

异常扩散[编辑]

在诸如多孔介质和分形等无序系统中,可能与不成比例,而是与成比例。 指数称为异常扩散英语Anomalous diffusion指数,它可能大于或小于2。[1]。异常扩散也可以写为σr2 ~ Dtα,其中α是异常参数。 随机环境中的一些扩散甚至与时间的对数的幂成比例,参见西奈漫步(Sinai's walk)或布罗克斯扩散(Brox diffusion)。

不同站点的数量[编辑]

在二维平面及三维空间上的点阵和分形上,对于单个随机游走者访问的不同站点的数量已经有了广氾的研究[2][3]。该量可用于分析动力学陷阱和动力学反应的问题。它还与振动密度有关,[4][5]扩散反应的过程,[6] and spread of populations in ecology.[7][8] 最近,对在d维欧几里得点阵上,个随机游走者访问的不同站点的问题,已经有了扩展的研究。[9]但N个步行者访问的不同站点的数量,不仅仅与每个步行者访问的不同站点的数量有关。

信息速率[编辑]

对于一个高斯随机漫步,对应其平方差距离的信息速率,即其二次速率失真函数,由以下参数函数给出[10]

其中。因此,如果使用小于位元的二进制代码编码,那么不可能在预期均方误差小于的条件下将其恢复。 另一方面,对于任何,存在一个足够大的,以及一个元素数量不超过二进制代码,使得从这段代码中恢复时的预期均方误差最多为

应用[编辑]

伦敦的量子云英语Quantum Cloud雕像,由安东尼·戈姆利英语Antony Gormley所塑,它的设计是由电脑用随机游走算法生成的。

如上所述,人们已经尝试将相当大范围的自然现象通过某种随机漫步来模拟,特别是在物理学[11][12],化学[13],以及材料科学[14][15],生物[16]以及许多其他领域[17][18]。以下是随机游走的一些具体的应用:

  • 金融经济学中,随机游走假设被用于模拟股票价格,等等。实证研究表明,这种理论模型与现实并不完全相符,特别是在短期和长期相关性方面。参看股价
  • 群体遗传学中,随机游走描述了遗传漂变的统计特性。
  • 物理学中,随机游走是许多自然现象的简化模型,例如布朗运动,扩散作用,例如分子在液体和气体中的随机运动。参见扩散限制聚集。随机游走和一些自相互作用的行走也见于量子场理论
  • 数学生态学中,随机游走用于模拟动物个体的运动,来从实践上支持生物扩散过程。它有时也用于模拟种群动态
  • 高分子物理学中,随机游走描述了理想的链。这是研究聚合物模型最简单的一种。[32]
  • 在其他数学领域,随机游走可对普拉斯方程求解,估算谐波测量,以及分析和组合学中的各种构造。
  • 计算机科学中,随机游走用于估计Web的大小。在2006年的万维网会议上,Bar-Yossef等人发表了他们的研究结果和算法。
  • 图像分割中,随机游走用于确定与每个像素相关联的标签(即“对象”或“背景”)。[33]该算法通常被称为随机游走分段算法。

In all these cases [哪个/哪些?], random walk is often substituted for Brownian motion [为何?].

  • In brain research, random walks and reinforced random walks are used to model cascades of neuron firing in the brain.
  • In vision science, ocular drift tends to behave like a random walk.[21] According to some authors, fixational eye movements in general are also well described by a random walk.[22]
  • In psychology, random walks explain accurately the relation between the time needed to make a decision and the probability that a certain decision will be made.[23]
  • Random walks can be used to sample from a state space which is unknown or very large, for example to pick a random page off the internet or, for research of working conditions, a random worker in a given country.[来源请求]
  • When this last approach is used in computer science it is known as Markov chain Monte Carlo or MCMC for short. Often, sampling from some complicated state space also allows one to get a probabilistic estimate of the space's size. The estimate of the permanent of a large matrix of zeros and ones was the first major problem tackled using this approach.[来源请求]

变种[编辑]

许多随机过程都与单纯的随机漫步十分接近,只不过是在其结构上进行拓展。在这种单纯结构中,每一步都是独立同分布的随机变量。

On graphs[编辑]

设G为有限或无限图。G上的随机漫步定义如下:一个从0开始,长度为k的随机过程,其随机变量为 ,使得 是随机选出的与相邻的一个点,每一个相邻点有相同的概率被选中。 对任意随机游走,设为它长度为k,以v为起点,w为终点的可能性。 这样,若图G以顶点0为根,那么步长的随机游走返回到0的可能性。

Building on the analogy from the earlier section on higher dimensions, assume now that our city is no longer a perfect square grid. When our person reaches a certain junction, he picks between the variously available roads with equal probability. Thus, if the junction has seven exits the person will go to each one with probability one-seventh. This is a random walk on a graph. Will our person reach his home? It turns out that under rather mild conditions, the answer is still yes. For example, if the lengths of all the blocks are between a and b (where a and b are any two finite positive numbers), then the person will, almost surely, reach his home. Notice that we do not assume that the graph is planar, i.e. the city may contain tunnels and bridges. One way to prove this result is using the connection to electrical networks. Take a map of the city and place a one ohm resistor on every block. Now measure the "resistance between a point and infinity." In other words, choose some number R and take all the points in the electrical network with distance bigger than R from our point and wire them together. This is now a finite electrical network, and we may measure the resistance from our point to the wired points. Take R to infinity. The limit is called the resistance between a point and infinity. It turns out that the following is true (an elementary proof can be found in the book by Doyle and Snell):

Theorem: a graph is transient if and only if the resistance between a point and infinity is finite. It is not important which point is chosen if the graph is connected.

In other words, in a transient system, one only needs to overcome a finite resistance to get to infinity from any point. In a recurrent system, the resistance from any point to infinity is infinite.

This characterization of transience and recurrence is very useful, and specifically it allows us to analyze the case of a city drawn in the plane with the distances bounded.

A random walk on a graph is a very special case of a Markov chain. Unlike a general Markov chain, random walk on a graph enjoys a property called time symmetry or reversibility. Roughly speaking, this property, also called the principle of detailed balance, means that the probabilities to traverse a given path in one direction or the other have a very simple connection between them (if the graph is regular, they are just equal). This property has important consequences.

Starting in the 1980s, much research has gone into connecting properties of the graph to random walks. In addition to the electrical network connection described above, there are important connections to isoperimetric inequalities, see more here, functional inequalities such as Sobolev and Poincaré inequalities and properties of solutions of Laplace's equation. A significant portion of this research was focused on Cayley graphs of finitely generated groups. In many cases these discrete results carry over to, or are derived from manifolds and Lie groups.

In the context of random graphs, particularly that of the Erdős–Rényi model, analytical results to some properties of random walkers have been obtained. These include the distribution of first[26] and last hitting times[27] of the walker, where the first hitting time is given by the first time the walker steps into a previously visited site of the graph, and the last hitting time corresponds the first time the walker cannot perform an additional move without revisiting a previously visited site.

A good reference for random walk on graphs is the online book by Aldous and Fill. For groups see the book of Woess. If the transition kernel is itself random (based on an environment ) then the random walk is called a "random walk in random environment". When the law of the random walk includes the randomness of , the law is called the annealed law; on the other hand, if is seen as fixed, the law is called a quenched law. See the book of Hughes, the book of Revesz, or the lecture notes of Zeitouni.

We can think about choosing every possible edge with the same probability as maximizing uncertainty (entropy) locally. We could also do it globally – in maximal entropy random walk (MERW) we want all paths to be equally probable, or in other words: for every two vertexes, each path of given length is equally probable. This random walk has much stronger localization properties.

Self-interacting random walks[编辑]

There are a number of interesting models of random paths in which each step depends on the past in a complicated manner. All are more complex for solving analytically than the usual random walk; still, the behavior of any model of a random walker is obtainable using computers. Examples include:

The self-avoiding walk of length n on Z^d is the random n-step path which starts at the origin, makes transitions only between adjacent sites in Z^d, never revisit a site, and is chosen uniformly among all such paths. In two dimensions, due to self-trapping, a typical self-avoiding walk is very short,[29] while in higher dimension it grows beyond all bounds. This model has often been used in polymer physics (since the 1960s).

Long-range correlated walks[编辑]

Long-range correlated time series are found in many biological, climatological and economic systems.

  • Heartbeat records[34]
  • Non-coding DNA sequences[35]
  • Volatility time series of stocks[36]
  • Temperature records around the globe[37]

Biased random walks on graphs[编辑]

Maximal entropy random walk[编辑]

Random walk chosen to maximize entropy rate, has much stronger localization properties.

Correlated random walks[编辑]

Random walks where the direction of movement at one time is correlated with the direction of movement at the next time. It is used to model animal movements.[38][39]

See also[编辑]

参考文献[编辑]

  1. ^ D. Ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems, Cambridge University Press, 2000.
  2. ^ Weiss, George H.; Rubin, Robert J. Random Walks: Theory and Selected Applications. Advances in Chemical Physics 52. 1982: 363–505. ISBN 9780470142769. doi:10.1002/9780470142769.ch5. 
  3. ^ Blumen, A.; Klafter, J.; Zumofen, G. Models for Reaction Dynamics in Glasses. Optical Spectroscopy of Glasses. Physic and Chemistry of Materials with Low-Dimensional Structures 1. 1986: 199–265. Bibcode:1986PCMLD...1..199B. ISBN 978-94-010-8566-3. doi:10.1007/978-94-009-4650-7_5. 
  4. ^ Alexander, S.; Orbach, R. Density of states on fractals : " fractons ". Journal de Physique Lettres. 1982, 43 (17): 625–631. doi:10.1051/jphyslet:019820043017062500. 
  5. ^ Rammal, R.; Toulouse, G. Random walks on fractal structures and percolation clusters. Journal de Physique Lettres. 1983, 44 (1): 13–22. doi:10.1051/jphyslet:0198300440101300. 
  6. ^ Smoluchowski, M.V. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 1917, (29): 129–168. ,Rice, S.A. Diffusion-Limited Reactions. Comprehensive Chemical Kinetics 25. Elsevier. 1 March 1985 [13 August 2013]. ISBN 978-0-444-42354-2. 
  7. ^ Skellam, J. G. Random Dispersal in Theoretical Populations. Biometrika. 1951, 38 (1/2): 196–218. JSTOR 2332328. doi:10.2307/2332328. 
  8. ^ Skellam, J. G. Studies in Statistical Ecology: I. Spatial Pattern. Biometrika. 1952, 39 (3/4): 346–362. JSTOR 2334030. doi:10.2307/2334030. 
  9. ^ Larralde, Hernan; Trunfio, Paul; Havlin, Shlomo; Stanley, H. Eugene; Weiss, George H. Territory covered by N diffusing particles. Nature. 1992, 355 (6359): 423–426. Bibcode:1992Natur.355..423L. doi:10.1038/355423a0. ,Larralde, Hernan; Trunfio, Paul; Havlin, Shlomo; Stanley, H.; Weiss, George. Number of distinct sites visited by N random walkers. Physical Review A. 1992, 45 (10): 7128–7138. Bibcode:1992PhRvA..45.7128L. doi:10.1103/PhysRevA.45.7128. ; for insights regarding the problem of N random walkers, see Shlesinger, Michael F. New paths for random walkers. Nature. 1992, 355 (6359): 396–397. Bibcode:1992Natur.355..396S. doi:10.1038/355396a0.  and the color artwork illustrating the article.
  10. ^ T. Berger, "Information rates of Wiener processes," in IEEE Transactions on Information Theory, vol. 16, no. 2, pp. 134-139, March 1970. doi: 10.1109/TIT.1970.1054423
  11. ^ Risken H. (1984) The Fokker–Planck Equation. Springer, Berlin.
  12. ^ De Gennes P. G. (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca and London.
  13. ^ Van Kampen N. G. (1992) Stochastic Processes in Physics and Chemistry, revised and enlarged edition. North-Holland, Amsterdam.
  14. ^ Weiss, George H. Aspects and Applications of the Random Walk. Random Materials and Processes. North-Holland Publishing Co., Amsterdam. 1994. ISBN 978-0-444-81606-1. MR 1280031. 
  15. ^ Doi M. and Edwards S. F. (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford
  16. ^ Goel N. W. and Richter-Dyn N. (1974) Stochastic Models in Biology. Academic Press, New York.
  17. ^ Redner S. (2001) A Guide to First-Passage Process. Cambridge University Press, Cambridge, UK.
  18. ^ Cox D. R. (1962) Renewal Theory. Methuen, London.
  19. ^ Jones, R.A.L. Soft condensed matter Reprint. Oxford [u.a.]: Oxford Univ. Pr. 2004: 77–78. ISBN 978-0-19-850589-1. 
  20. ^ Grady, L. Random walks for image segmentation (PDF). IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006, 28 (11): 1768–83. CiteSeerX 10.1.1.375.3389可免费查阅. PMID 17063682. doi:10.1109/TPAMI.2006.233. 
  21. ^ Rucci, M; Victor, J. D. The unsteady eye: An information-processing stage, not a bug. Trends in Neurosciences. 2015, 38 (4): 195–206. PMC 4385455可免费查阅. PMID 25698649. doi:10.1016/j.tins.2015.01.005. 
  22. ^ Engbert, R.; Mergenthaler, K.; Sinn, P.; Pikovsky, A. An integrated model of fixational eye movements and microsaccades. Proceedings of the National Academy of Sciences. 2011, 108 (39): E765–70. Bibcode:2011PNAS..108E.765E. PMC 3182695可免费查阅. PMID 21873243. doi:10.1073/pnas.1102730108. 
  23. ^ Nosofsky, R. M.; Palmeri, T. J. An exemplar-based random walk model of speeded classification (PDF). Psychological Review. 1997, 104 (2): 266–300. PMID 9127583. doi:10.1037/0033-295x.104.2.266. (原始内容 (PDF)存档于2004-12-10). 
  24. ^ Codling, E. A; Plank, M. J; Benhamou, S. Random walk models in biology. Journal of the Royal Society Interface. 6 August 2008, 5 (25): 813–834. PMC 2504494可免费查阅. PMID 18426776. doi:10.1098/rsif.2008.0014. 
  25. ^ Gupta, Pankaj et al. WTF: The who-to-follow system at Twitter, Proceedings of the 22nd international conference on World Wide Web
  26. ^ Tishby, Biham, Katzav (2016), The distribution of first hitting times of random walks on Erdős-Rényi networks, arxiv.org.
  27. ^ Tishby, Ido; Biham, Ofer; Katzav, Eytan. The distribution of path lengths of self avoiding walks on Erdős–Rényi networks. Journal of Physics A: Mathematical and Theoretical. 2016, 49 (28): 285002. Bibcode:2016JPhA...49B5002T. arXiv:1603.06613可免费查阅. doi:10.1088/1751-8113/49/28/285002. 
  28. ^ Madras, Neal and Slade, Gordon (1996) The Self-Avoiding Walk, Birkhäuser Boston. ISBN 0-8176-3891-1.
  29. ^ Hemmer, S.; Hemmer, P. C. An average self-avoiding random walk on the square lattice lasts 71 steps. J. Chem. Phys. 1984, 81 (1): 584–585. Bibcode:1984JChPh..81..584H. doi:10.1063/1.447349. 
  30. ^ Lawler, Gregory (1996). Intersection of random walks, Birkhäuser Boston. ISBN 0-8176-3892-X.
  31. ^ Lawler, Gregory Conformally Invariant Processes in the Plane, book.ps.
  32. ^ Pemantle, Robin. A survey of random processes with reinforcement (PDF). Probab. Surveys. 2007, 4: 1–79. arXiv:math/0610076可免费查阅. doi:10.1214/07-PS094. 
  33. ^ Alamgir, M and von Luxburg, U (2010). "Multi-agent random walks for local clustering on graphs", IEEE 10th International Conference on Data Mining (ICDM), pp. 18–27.
  34. ^ Peng, C.-K.; Mietus, J; Hausdorff, J. M.; Havlin, S; Stanley, H. E.; Goldberger, A. L. Long-range anticorrelations and non-gaussian behavior of the heartbeat. Phys. Rev. Lett. 1993, 70 (9): 1343–6. Bibcode:1993PhRvL..70.1343P. PMID 10054352. doi:10.1103/PhysRevLett.70.1343. 
  35. ^ Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S; Sciortino, F; Simons, M; Stanley, H. E. Long-range correlations in nucleotide sequences. Nature. 1992, 356 (6365): 168–70. Bibcode:1992Natur.356..168P. PMID 1301010. doi:10.1038/356168a0. 
  36. ^ Liu, Yanhui; Cizeau, Pierre; Meyer, Martin; Peng, C.-K.; Eugene Stanley, H. Correlations in economic time series. Physica A. 1997, 245 (3–4): 437. Bibcode:1997PhyA..245..437L. arXiv:cond-mat/9706021可免费查阅. doi:10.1016/S0378-4371(97)00368-3. 
  37. ^ Koscielny-Bunde, Eva; Bunde, Armin; Havlin, Shlomo; Roman, H. Eduardo; Goldreich, Yair; Schellnhuber, Hans-Joachim. Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett. 1998, 81 (3): 729. Bibcode:1998PhRvL..81..729K. doi:10.1103/PhysRevLett.81.729. 
  38. ^ Bovet, Pierre; Benhamou, Simon. Spatial analysis of animals' movements using a correlated random walk model. Journal of Theoretical Biology. 1988, 131 (4): 419–433. doi:10.1016/S0022-5193(88)80038-9. 
  39. ^ Kareiva, P.M.; Shigesada, N. Analyzing insect movement as a correlated random walk. Oecologia. 1983, 56 (2–3): 234–238. PMID 28310199. doi:10.1007/BF00379695.