# 格林恆等式

## 格林第一恆等式

${\displaystyle \int _{\mathbb {U} }\nabla \cdot \mathbf {F} \,\mathrm {d} V=\oint _{\partial \mathbb {U} }\mathbf {F} \cdot \mathbf {n} \,\mathrm {d} S}$

${\displaystyle \int _{\mathbb {U} }(\psi \nabla ^{2}\phi +\nabla \phi \cdot \nabla \psi )\,\mathrm {d} V=\oint _{\partial \mathbb {U} }\psi {\partial \phi \over \partial n}\,\mathrm {d} S}$

## 格林第二恆等式

${\displaystyle \int _{\mathbb {U} }\left(\psi \nabla ^{2}\phi -\phi \nabla ^{2}\psi \right)\,\mathrm {d} V=\oint _{\partial \mathbb {U} }\left(\psi {\partial \phi \over \partial n}-\phi {\partial \psi \over \partial n}\right)\,\mathrm {d} S}$

## 格林第三恆等式

${\displaystyle \nabla ^{2}G(\mathbf {x} ,\mathbf {x} ')=\delta (\mathbf {x} -\mathbf {x} ')}$

${\displaystyle G(\mathbf {x} ,\mathbf {x} ')={-1 \over 4\pi \|\mathbf {x} -\mathbf {x} '\|}}$

${\displaystyle \psi (\mathbf {x} )-\int _{\mathbb {U} }\left[G(\mathbf {x} ,\mathbf {x} ')\nabla '^{\,2}\psi (\mathbf {x} ')\right]\,\mathrm {d} V'=\oint _{\partial \mathbb {U} }\left[\psi (\mathbf {x} '){\partial G(\mathbf {x} ,\mathbf {x} ') \over \partial n'}-G(\mathbf {x} ,\mathbf {x} '){\partial \psi (\mathbf {x} ') \over \partial n'}\right]\,\mathrm {d} S'}$

${\displaystyle \nabla '^{\,2}\psi (\mathbf {x} ')=0}$

${\displaystyle \psi (\mathbf {x} )=\oint _{\partial \mathbb {U} }\left[\psi (\mathbf {x} '){\partial G(\mathbf {x} ,\mathbf {x} ') \over \partial n'}-G(\mathbf {x} ,\mathbf {x} '){\partial \psi (\mathbf {x} ') \over \partial n'}\right]\,\mathrm {d} S'}$

## 參考文獻

1. ^ Strauss, Walter. Partial Differential Equations: An Introduction. Wiley.