在数学中,对勾函数,又名双勾函数、耐克函数、对号函数,表示形为 f ( x ) = a x + b x {\displaystyle f(x)=ax+{\frac {b}{x}}} 的函数,其中 a b ≥ 0 {\displaystyle ab\geq 0} 。函数定义域为 ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) {\displaystyle (-\infty ,0)\cup (0,+\infty )} ,值域为 ( − ∞ , − 2 a b ] ∪ [ 2 a b , ∞ ) {\displaystyle (-\infty ,-2{\sqrt {ab}}]\cup [2{\sqrt {ab}},\infty )} 。其图像是分别以 y {\displaystyle y} 轴和 y = a x {\displaystyle y=ax} 为渐近线的两支双曲线。当 a ≥ 0 , b ≥ 0 {\displaystyle a\geq 0,b\geq 0} 时,其图像在第一象限形状就是个像耐克的品牌徽标一样,因此得名耐克函数。
以下是對勾函数 f ( x ) = x + 1 x {\displaystyle f(x)=x+{\frac {1}{x}}} 的图像
对 f ( x ) = x + a x ( a > 0 ) {\displaystyle f(x)=x+{\frac {a}{x}}(a>0)} ,任取 0 < x 1 < x 2 ≤ a {\displaystyle 0<x_{1}<x_{2}\leq {\sqrt {a}}} ,则有 { x 1 − x 2 < 0 x 1 ⋅ x 2 > 0 0 < x 1 ⋅ x 2 < a {\displaystyle {\begin{cases}x_{1}-x_{2}<0\\x_{1}\cdot x_{2}>0\\0<x_{1}\cdot x_{2}<a\\\end{cases}}} ∴ f ( x 1 ) − f ( x 2 ) = x 1 + a x 1 − x 2 − a x 2 = ( x 1 − x 2 ) ( x 1 ⋅ x 2 − a ) x 1 ⋅ x 2 > 0 {\displaystyle \therefore f(x_{1})-f(x_{2})=x_{1}+{\frac {a}{x_{1}}}-x_{2}-{\frac {a}{x_{2}}}={\frac {(x_{1}-x_{2})(x_{1}{\cdot }x_{2}-a)}{x_{1}{\cdot }x_{2}}}>0} ,即 f ( x 1 ) > f ( x 2 ) {\displaystyle f(x_{1})>f(x_{2})} ∴ f ( x ) {\displaystyle \therefore f(x)} 在 ( 0 , a ] {\displaystyle (0,{\sqrt {a}}]} 上单调递减。同理, f ( x ) {\displaystyle f(x)} 在 [ a , + ∞ ) {\displaystyle [{\sqrt {a}},+\infty )} 上单调递增;在 ( − ∞ , − a ] {\displaystyle (-\infty ,-{\sqrt {a}}]} 上单调递增;在 [ − a , 0 ) {\displaystyle \left[-{\sqrt {a}},0\right)} 上单调递减。