数学形态学

维基百科,自由的百科全书
跳转至: 导航搜索

数学形态学(Mathematical morphology) 是一门建立在格论拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀英语Erosion (morphology)膨胀 (形态学)英语Dilation (morphology)、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等。

二值形态学[编辑]

在二值形态学中,一个图案被看做是 欧几里得空间 或网格 子集

结构元素[编辑]

在二值结构学中,结构元素为一个二值影像,作为分析影像时使用的「探针」,代表当处理影像上的某点时、要取出周围的哪些点进行运算。[1]

以下是几个常用的结构元素(将原图写作A、结构元素写作B):

  • 待处理影像为二维类比影像 ,使用的结构元素B为一以原点为圆心、半径为r的圆盘。
  • 待处理影像为二维类比影像 ,使用的结构元素B为一以原点为中心的3x3方形。
  • 待处理影像为二维类比影像 ,使用的结构元素B为一以原点为中心的十字形,或写作

基础运算子[编辑]

二值形态学的基础运算子为具平移对称性的、与闵可夫斯基和直接相关的运算子。基础运算子包含膨胀、腐蚀,以及由前两者组合而成的开运算、闭运算。

膨胀[编辑]

膨胀(Dilation)的定义为「位於某个点的探针(结构元素)是否探测到物件?」一个影像A经过结构元素B膨胀後的结果可写为:[1]

.

其中,代表结构元素平移x後的点集合,b是图像B的元素的座标。

另外也可写为:

.

同上,其中是指二值影像A经过平移-b後新的点集合。

腐蚀[编辑]

腐蚀(Erosion)的定义为「位於某个点的探针(结构元素)是否全都有探测到物件?」一个影像A经过结构元素B腐蚀後的结果可写为:[1]

.

开运算、闭运算[编辑]

开运算(Opening)闭运算(Closing)是使用相同结构函数的腐蚀与膨胀的组合:

开运算为先腐蚀再膨胀,

.

闭运算为先膨胀再腐蚀

.

基础运算子的性质[编辑]

  • 所有的运算子具有平移对称性英语Translational_symmetry
  • 所有的运算子都是递增的,例:如果 ,则
  • 膨胀具有交换律,例:
  • 膨胀具有结合律,例:;另外腐蚀则为
  • 如果B包含原点(0,0),则有
  • 膨胀与腐蚀间的关系为:,上标代表补集,上标代表对原点的点对称集合。
  • 开运算与闭运算间的关系为:
  • 膨胀对联集分配律,例:;腐蚀对交集有分配律,例:
  • 膨胀与腐蚀为彼此的广义逆运算 若且为若
  • 开运算与闭运算是幕等的:

历史[编辑]

数学形态学诞生于1964年,由当时法国巴黎矿业学院的马瑟荣(G. Matheron)和赛拉(J. Serra)两人共同奠定了其理论基础。1968年4月法国枫丹白露数学形态学研究中心成立,巴黎矿业学院为中心提供了研究基地。

20世纪数学形态学的发展过程可大致分为:

  • 60年代的孕育和形成期
  • 70年代的充实和发展期
  • 80年代的成熟和对外开放期
  • 90年代至今的扩展期

參考資料[编辑]

  1. ^ 1.0 1.1 1.2 Morphological Image Analysis; Principles and Applications by Pierre Soille, ISBN 3-540-65671-5 (1999), 2nd edition (2003)

外部链接[编辑]