熱電效應

维基百科,自由的百科全书
跳转至: 导航搜索

热电效应是一個由温差产生电压的直接转换,且反之亦然。简单的放置一个热电装置,当他们的两端有温差时会产生一个电压,而当一个电压施加于其上,他也会产生一个温差。这个效应可以用来产生电能、测量温度,冷却或加热物体。因为这个加热或制冷的方向决定于施加的电压,热电装置让温度控制变得非常容易。

一般来说,热电效应这个术语包含了三个分别经定义过的效应,塞贝克效应(Seebeck effect,由Thomas Johann Seebeck发现 。)、帕尔帖效应(Peltier effect,由Jean-Charles Peltier发现。),与汤姆孙效应(Thomson effect,由威廉·汤姆孙发现)。在很多教科书上,热电效应也被称为帕尔帖-塞贝克效应(Peltier–Seebeck effect)。它同时由法国物理学家晉·查理·阿提鞍斯·帕尔帖(Jean Charles Athanase Peltier)与爱沙尼亚裔德國物理学家托马斯·约翰·塞贝克 (Thomas Johann Seebeck)分別独立发现。 还有一个术语叫焦耳加热,也就是說當一个电压通过一个阻抗物质上,即會產生熱,它是多少有关系的,尽管它不是一个普通的热电效应术语(由於热电裝置的非理想性,它通常被視為一個產生損耗的機制)。帕尔帖-塞贝克效应与汤姆孙效应是可逆的,但是焦耳加热不可逆。

塞贝克效应[编辑]

两种不同金属构成的回路中,如果两种金属的结点处温度不同,该回路中就会产生一个温差电动势。这就是塞贝克效应(Seebeck Effect)。

塞贝克发现,当两种不同金属组成闭合回路且结点处温度不同时,指南针的指针会发生偏转。于是他认为温差使金属产生了磁场。但是当时塞贝克并没有发现金属回路中的电流,所以他把这个现象叫做“热磁效应”。后来,丹麦物理学家汉斯·奥斯特重新研究了这个现象并称之为“热电效应”。

不同的金属导体(或半导体)具有不同的自由电子密度,当两种不同的金属导体相互接触时,在接触面上的电子就会扩散以消除电子密度的差异。而电子的扩散速率与接触区的温度成正比,所以只要维持两金属间的温差,就能使电子持续扩散,在两块金属的另两个端点形成稳定的电压。由此产生的电压通常每开尔文温差只有几微伏

在以下电路中:

Seebeck effect circuit 2.svg

由塞贝克效应产生的电压可以表示成:

V = \int_{T_1}^{T_2} \left( S_\mathrm{B}(T) - S_\mathrm{A}(T) \right) \, dT.

SASB是金属A和B的塞贝克系数T1T2是两块金属结合处的温度。塞贝克系数取决于温度和材料的分子结构。如果塞贝克系数在实验的温度范围内接近常数,以上方程可以近似成:

V = (S_\mathrm{B} - S_\mathrm{A}) \cdot (T_2 - T_1).

帕尔帖效应[编辑]

传统上有时称帕尔贴效应是塞贝克效应,但此说法并不严谨。

与塞贝克效应不同,帕尔贴效应可以产生在两种不同金属的交界面,或者一种多相材料的不同相界间,也可以产生在非匀质导体的不同浓度梯度范围内。

当对上述三种材料嵌入回路中并施加电流时,金属1会对金属2或相1对相2,或浓度点C1与C2间)产生放热或吸热反应。[1]

帕尔帖效应即為塞贝克效应的反效应,即当在两种金属回路中加入电源产生电势后,不同金属的接触点会有一个温差。

汤姆孙效应[编辑]

当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。或者反过来,当一根金属棒的两端温度不同时,金属棒两端会形成电势差。这一现象后叫汤姆孙效应(Thomson effect)

参见[编辑]

参考文献[编辑]

  1. ^ Daniel D.Pollock. A-2 Thermoelectric phenomena. CRC Handbook of Thermoelectrics. 1995 by CRC Press LLC