# 狄利克雷原理

${\displaystyle \Delta u+f=0\,}$

${\displaystyle \partial \Omega }$${\displaystyle u=g\,}$

${\displaystyle E[v]=\int _{\Omega }\left({\frac {1}{2}}|\nabla v|^{2}-vf\right)\,\mathrm {d} x}$

## 证明

${\displaystyle E[v]=\int _{\Omega }\left({\frac {1}{2}}|\nabla v|^{2}-vf\right)\,\mathrm {d} x}$

${\displaystyle E[u+\varepsilon w]=\int _{\Omega }\left({\frac {1}{2}}|\nabla u+\varepsilon \nabla w|^{2}-uf-\varepsilon wf\right)\,\mathrm {d} x\geqslant \int _{\Omega }\left({\frac {1}{2}}|\nabla u|^{2}-uf\right)\,\mathrm {d} x}$

${\displaystyle \int _{\Omega }\left(\varepsilon \nabla u\cdot \nabla w+{\frac {1}{2}}\varepsilon ^{2}|\nabla w|^{2}-\varepsilon wf\right)\,\mathrm {d} x\geqslant 0}$

${\displaystyle \int _{\Omega }\left(\nabla u\cdot \nabla w-wf\right)\,\mathrm {d} x=0}$

{\displaystyle {\begin{aligned}0&=\int _{\partial \Omega }w\left(\nabla u\cdot \mathbf {n} \right)\,\mathrm {d} \sigma =\int _{\Omega }\operatorname {div} \left(w\cdot \nabla u\right)\,\mathrm {d} x\\&=\int _{\Omega }\left(w\Delta u+\nabla u\cdot \nabla w\right)\,\mathrm {d} x=\int _{\Omega }w\left(\Delta u+f\right)\,\mathrm {d} x\end{aligned}}}

## 参考来源

1. ^ Mark.A.Prinsky. Partial Differential Equations and Boundary Value Problems With Applications. Waveland Pr Inc. 2003. ISBN 978-1577662754.