^ 1.01.1Chazot, N., Wahlberg, N., Freitas, A. V. L., Mitter, C., Labandeira, C., Sohn, J. C., ... & Heikkilä, M. (2019). Priors and Posteriors in Bayesian Timing of Divergence Analyses: the Age of Butterflies Revisited. Systematic biology.https://doi.org/10.1093/sysbio/syz002
^ 2.02.12.2Condamine, F. L. (2018). Limited by the roof of the world: mountain radiations of Apollo swallowtails controlled by diversity-dependence processes. Biology letters, 14(3), 20170622.
^Allio, R., Nabholz, B., Wanke, S., Chomicki, G., Pérez-Escobar, O. A., Cotton, A. M., ... & Condamine, F. L. (2020). Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. bioRxiv.
Nazari V., Sperling F.A.H. 2007. Mitochondrial DNA divergence and phylogeography in western Palaearctic Parnassiinae (Lepidoptera: Papilionidae): how many species are there? Insect. Syst. Evol. 38:121–138.
Bollino M., Racheli T. 2012. Parnassiinae (Partim). Parnassiini (Partim), Luehdorfiini, Zerynthiini. In: Bauer E., Frankenbach T., editors. Butterflies of the World, Part 36, Supplement 20. Keltern, Germany: Goecke und Evers. p. 64.
Frankenbach T., Bollino M., Racheli T. 2012. Papilionidae XIV: Hypermnestra, Luehdorfiini, Zerynthiini. In: Bauer E., Frankenbach T., editors. Butterflies of the World, Part 36. Keltern, Germany: Goecke und Evers. p. 26.
Condamine, F. L., Rolland, J., Hohna, S., Sperling, F. A., & Sanmartin, I. (2017). Testing the role of the Red Queen and Court Jester as drivers of the macroevolution of Apollo butterflies. bioRxiv, 198960.