数学 中,特别是泛函分析 中,作用于希尔伯特空间 X 、Y 之间的紧算子
T
:
X
→
Y
{\displaystyle T:X\rightarrow Y}
的奇异值 是自伴算子
T
∗
T
{\displaystyle T^{*}T}
(
T
∗
{\displaystyle T^{*}}
表示T 的伴随 )的非负特征值 的平方根。
奇异值是非负实数 ,一般按递减顺序排列(
σ
1
(
T
)
,
σ
2
(
T
)
,
…
{\displaystyle \sigma _{1}(T),\ \sigma _{2}(T),\dots }
)。最大的奇异值
σ
1
(
T
)
{\displaystyle \sigma _{1}(T)}
等于T 的算子范数 (见极小-极大定理 )。
2维实值错切 矩阵M 的奇异值分解 可视化。首先,可见蓝色的单位圆盘 与2个标准基 向量;然后,可见M 的作用:将圆盘扭曲为椭圆 。SVD将M 分解为3个简单变换:旋转
V
∗
{\displaystyle V^{*}}
、沿旋转轴的缩放 Σ及第二次旋转 U 。Σ是对角矩阵 (本例中是方阵),对角线上包含M 的奇异值,代表椭圆半轴长度
σ
1
,
σ
2
{\displaystyle \sigma _{1},\ \sigma _{2}}
。
作用于欧氏空间
R
n
{\displaystyle \mathbb {R} ^{n}}
的T 的奇异值有简单的几何解释:单位n球在T 变换下的像是椭球 ,其半轴长度是T 的奇异值(图中提供了
R
2
{\displaystyle \mathbb {R} ^{2}}
的例子)。
奇异值是正规矩阵 A 的特征值 的绝对值 ,由谱定理 可得A 的单位对角化:
A
=
U
Λ
U
∗
{\displaystyle A=U\Lambda U^{*}}
。因此有
A
∗
A
=
U
Λ
∗
Λ
U
∗
=
U
|
Λ
|
U
∗
{\displaystyle {\sqrt {A^{*}A}}={\sqrt {U\Lambda ^{*}\Lambda U^{*}}}=U\left|\Lambda \right|U^{*}}
。
研究的希尔伯特空间算子的大多数范数 都是用奇异值定义的。例如,樊𰋀 -k -范数是前k 个奇异值的和,迹范数是所有奇异值的和,沙滕范数 是奇异值的p 次幂之和的p 次根。注意每种范数都只定义在一类特殊的算子上,因此奇异值有助于算子的分类。
有限维情形,矩阵 总可以分解为
U
Σ
V
∗
{\displaystyle \mathbf {U\Sigma V^{*}} }
,其中
U
{\displaystyle \mathbf {U} }
、
V
∗
{\displaystyle \mathbf {V^{*}} }
是酉矩阵 ,
Σ
{\displaystyle \mathbf {\Sigma } }
是矩形对角矩阵 ,奇异值在对角线上。这就是奇异值分解 。
对
A
∈
C
m
×
n
{\displaystyle A\in \mathbb {C} ^{m\times n}}
、
i
=
1
,
2
,
…
,
min
{
m
,
n
}
{\displaystyle i=1,2,\ldots ,\min\{m,n\}}
。
应用特征值的最小-最大定理。这里
U
:
dim
(
U
)
=
i
{\displaystyle U:\dim(U)=i}
是
C
n
{\displaystyle \mathbb {C} ^{n}}
的i 维子空间。
σ
i
(
A
)
=
min
dim
(
U
)
=
n
−
i
+
1
max
x
∈
U
‖
x
‖
2
=
1
‖
A
x
‖
2
.
σ
i
(
A
)
=
max
dim
(
U
)
=
i
min
x
∈
U
‖
x
‖
2
=
1
‖
A
x
‖
2
.
{\displaystyle {\begin{aligned}\sigma _{i}(A)&=\min _{\dim(U)=n-i+1}\max _{\underset {\|x\|_{2}=1}{x\in U}}\left\|Ax\right\|_{2}.\\\sigma _{i}(A)&=\max _{\dim(U)=i}\min _{\underset {\|x\|_{2}=1}{x\in U}}\left\|Ax\right\|_{2}.\end{aligned}}}
矩阵转置和共轭不会改变奇异值。
σ
i
(
A
)
=
σ
i
(
A
T
)
=
σ
i
(
A
∗
)
.
{\displaystyle \sigma _{i}(A)=\sigma _{i}\left(A^{\textsf {T}}\right)=\sigma _{i}\left(A^{*}\right).}
对任意酉矩阵
U
∈
C
m
×
m
,
V
∈
C
n
×
n
{\displaystyle U\in \mathbb {C} ^{m\times m},V\in \mathbb {C} ^{n\times n}}
σ
i
(
A
)
=
σ
i
(
U
A
V
)
.
{\displaystyle \sigma _{i}(A)=\sigma _{i}(UAV).}
与特征值的关系:
σ
i
2
(
A
)
=
λ
i
(
A
A
∗
)
=
λ
i
(
A
∗
A
)
.
{\displaystyle \sigma _{i}^{2}(A)=\lambda _{i}\left(AA^{*}\right)=\lambda _{i}\left(A^{*}A\right).}
与迹 的关系:
∑
i
=
1
n
σ
i
2
=
tr
A
∗
A
{\displaystyle \sum _{i=1}^{n}\sigma _{i}^{2}={\text{tr}}\ A^{\ast }A}
.
若
A
⊤
A
{\displaystyle A^{\top }A}
满秩,则奇异值的积是
det
A
⊤
A
{\displaystyle {\sqrt {\det A^{\top }A}}}
。
若
A
A
⊤
{\displaystyle AA^{\top }}
满秩,则奇异值的积是
det
A
A
⊤
{\displaystyle {\sqrt {\det AA^{\top }}}}
。
若A 满秩,则奇异值的积是
|
det
A
|
{\displaystyle |\det A|}
。
另见[ 1]
对
A
∈
C
m
×
n
{\displaystyle A\in \mathbb {C} ^{m\times n}}
,
令B 表示删除了某一行或某一列的A 。则
σ
i
+
1
(
A
)
≤
σ
i
(
B
)
≤
σ
i
(
A
)
{\displaystyle \sigma _{i+1}(A)\leq \sigma _{i}(B)\leq \sigma _{i}(A)}
令B 表示删除了某一行和某一列的A 。则
σ
i
+
2
(
A
)
≤
σ
i
(
B
)
≤
σ
i
(
A
)
{\displaystyle \sigma _{i+2}(A)\leq \sigma _{i}(B)\leq \sigma _{i}(A)}
令B 表示A 的
(
m
−
k
)
×
(
n
−
l
)
{\displaystyle (m-k)\times (n-l)}
子矩阵,则
σ
i
+
k
+
l
(
A
)
≤
σ
i
(
B
)
≤
σ
i
(
A
)
{\displaystyle \sigma _{i+k+l}(A)\leq \sigma _{i}(B)\leq \sigma _{i}(A)}
对
A
,
B
∈
C
m
×
n
{\displaystyle A,B\in \mathbb {C} ^{m\times n}}
∑
i
=
1
k
σ
i
(
A
+
B
)
≤
∑
i
=
1
k
(
σ
i
(
A
)
+
σ
i
(
B
)
)
,
k
=
min
{
m
,
n
}
{\displaystyle \sum _{i=1}^{k}\sigma _{i}(A+B)\leq \sum _{i=1}^{k}(\sigma _{i}(A)+\sigma _{i}(B)),\quad k=\min\{m,n\}}
σ
i
+
j
−
1
(
A
+
B
)
≤
σ
i
(
A
)
+
σ
j
(
B
)
.
i
,
j
∈
N
,
i
+
j
−
1
≤
min
{
m
,
n
}
{\displaystyle \sigma _{i+j-1}(A+B)\leq \sigma _{i}(A)+\sigma _{j}(B).\quad i,j\in \mathbb {N} ,\ i+j-1\leq \min\{m,n\}}
对
A
,
B
∈
C
n
×
n
{\displaystyle A,B\in \mathbb {C} ^{n\times n}}
∏
i
=
n
i
=
n
−
k
+
1
σ
i
(
A
)
σ
i
(
B
)
≤
∏
i
=
n
i
=
n
−
k
+
1
σ
i
(
A
B
)
∏
i
=
1
k
σ
i
(
A
B
)
≤
∏
i
=
1
k
σ
i
(
A
)
σ
i
(
B
)
,
∑
i
=
1
k
σ
i
p
(
A
B
)
≤
∑
i
=
1
k
σ
i
p
(
A
)
σ
i
p
(
B
)
,
{\displaystyle {\begin{aligned}\prod _{i=n}^{i=n-k+1}\sigma _{i}(A)\sigma _{i}(B)&\leq \prod _{i=n}^{i=n-k+1}\sigma _{i}(AB)\\\prod _{i=1}^{k}\sigma _{i}(AB)&\leq \prod _{i=1}^{k}\sigma _{i}(A)\sigma _{i}(B),\\\sum _{i=1}^{k}\sigma _{i}^{p}(AB)&\leq \sum _{i=1}^{k}\sigma _{i}^{p}(A)\sigma _{i}^{p}(B),\end{aligned}}}
σ
n
(
A
)
σ
i
(
B
)
≤
σ
i
(
A
B
)
≤
σ
1
(
A
)
σ
i
(
B
)
i
=
1
,
2
,
…
,
n
.
{\displaystyle \sigma _{n}(A)\sigma _{i}(B)\leq \sigma _{i}(AB)\leq \sigma _{1}(A)\sigma _{i}(B)\quad i=1,2,\ldots ,n.}
对
A
,
B
∈
C
m
×
n
{\displaystyle A,B\in \mathbb {C} ^{m\times n}}
[ 2]
2
σ
i
(
A
B
∗
)
≤
σ
i
(
A
∗
A
+
B
∗
B
)
,
i
=
1
,
2
,
…
,
n
.
{\displaystyle 2\sigma _{i}(AB^{*})\leq \sigma _{i}\left(A^{*}A+B^{*}B\right),\quad i=1,2,\ldots ,n.}
对
A
∈
C
n
×
n
{\displaystyle A\in \mathbb {C} ^{n\times n}}
.
见[ 3]
λ
i
(
A
+
A
∗
)
≤
2
σ
i
(
A
)
,
i
=
1
,
2
,
…
,
n
.
{\displaystyle \lambda _{i}\left(A+A^{*}\right)\leq 2\sigma _{i}(A),\quad i=1,2,\ldots ,n.}
假设
|
λ
1
(
A
)
|
≥
⋯
≥
|
λ
n
(
A
)
|
{\displaystyle \left|\lambda _{1}(A)\right|\geq \cdots \geq \left|\lambda _{n}(A)\right|}
,则对
k
=
1
,
2
,
…
,
n
{\displaystyle k=1,2,\ldots ,n}
:
外尔定理
∏
i
=
1
k
|
λ
i
(
A
)
|
≤
∏
i
=
1
k
σ
i
(
A
)
.
{\displaystyle \prod _{i=1}^{k}\left|\lambda _{i}(A)\right|\leq \prod _{i=1}^{k}\sigma _{i}(A).}
对
p
>
0
{\displaystyle p>0}
。
∑
i
=
1
k
|
λ
i
p
(
A
)
|
≤
∑
i
=
1
k
σ
i
p
(
A
)
.
{\displaystyle \sum _{i=1}^{k}\left|\lambda _{i}^{p}(A)\right|\leq \sum _{i=1}^{k}\sigma _{i}^{p}(A).}
奇异值这一概念由埃哈德·施密特 (1907)提出,当时称奇异值为“特征值”。“奇异值”的名称由史密斯于1937年首次使用。1957年,Allahverdiev证明了第n 个奇异值的如下特征:[ 4]
σ
n
(
T
)
=
inf
{
‖
T
−
L
‖
:
L
的秩
<
n
}
.
{\displaystyle \sigma _{n}(T)=\inf {\big \{}\,\|T-L\|:L{\text{的秩}}<n\,{\big \}}.}
这种表述使奇异值概念可以推广到巴拿赫空间 的算子。
注意还有更一般的s-数(s-number)概念,也包括盖尔范德和柯尔莫哥洛夫宽。
^ R. A. Horn and C. R. Johnson . Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991. Chap. 3
^ X. Zhan. Matrix Inequalities. Springer-Verlag, Berlin, Heidelberg, 2002. p.28
^ R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997. Prop. III.5.1
^ I. C. Gohberg and M. G. Krein . Introduction to the Theory of Linear Non-selfadjoint Operators. American Mathematical Society, Providence, R.I.,1969. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18.