婆罗摩笈多公式

维基百科,自由的百科全书
跳到导航 跳到搜索

欧氏平面几何中,婆罗摩笈多公式是用以计算圆内接四边形面积的公式,一般四边形的面积公式请见布雷特施奈德公式

基本形式[编辑]

婆罗摩笈多公式的最简单易记的形式,是圆内接四边形面积计算。若圆内接四边形的四边长为a, b, c, d,则其面积为:

其中p半周长

证明[编辑]

Brahmaguptas formula.svg

圆内接四边形的面积 = 的面积 + 的面积

但由于是圆内接四边形,因此。故。所以:

利用余弦定理,我们有:

代入(这是由于互补角),并整理,得:

把这个等式代入面积的公式中,得:

它是的形式,因此可以写成的形式:

引入

两边开平方,得:

证毕。

更特殊情况[编辑]

若圆O的圆内接四边形的四边长为a, b, c, d,且外切于圆C,则其面积为:

证明[编辑]

由于四边形内接于圆O,所以:

其中p为半周长:

又因为四边形外切圆C,所以:

则:

同理:

综上:

证毕。

一般情况[编辑]

对一般四边形的面积,扩展的婆罗摩笈多公式(布雷特施奈德公式)用到了四边形的对角和:

其中是四边形一对角和的一半。(选取另一对角也不会影响答案,因其和的一半是。而,所以。)

因为圆内接四边形的对角和为,而,所以项为零,给出公式的基本形式。

另一个由柯立芝所证明的公式如下[1]

其中 pq 为四边形对角线之长。在圆内接四边形中,根据托勒密定理我们有,此公式退回为基本形式。

相关定理[编辑]

海伦公式给出三角形的面积。它是婆罗摩笈多公式取的特殊情形。

婆罗摩笈多公式的基本形式和扩充形式,就像由勾股定理扩充至馀弦定理一般。

  1. ^ J. L. Coolidge, "A Historically Interesting Formula for the Area of a Quadrilateral", American Mathematical Monthly, 46 (1939) pp. 345-347.