跳转到内容

莫德尔猜想

维基百科,自由的百科全书
(重定向自法爾廷斯定理
法尔廷斯定理
格尔德·法尔廷斯
领域算术几何
猜想提出者路易·莫德尔英语Louis Mordell
猜想提出年1922
最初证明者格尔德·法尔廷斯
最初证明年1983
推广邦别里-朗猜想英语Bombieri–Lang conjecture
莫德尔-朗猜想英语Mordell–Lang conjecture
可得结果西葛尔的整数点定理英语Siegel's theorem on integral points

莫德尔猜想(Mordell conjecture),又称法尔廷斯定理(Faltings's theorem),是一个由路易·莫德尔英语Louis Mordell[1]提出的算术几何猜想,这猜想认为,任何有理数域上亏格数大于一的曲线至多只有有限多个有理点。这猜想于1983年为格尔德·法尔廷斯所证明[2],并从此改名为法尔廷斯定理,而之后这猜想被推广至任何代数数域上。

背景

[编辑]

C为一个非特异英语Singular point of an algebraic variety的、位于有理数域上且亏格数为g的代数曲线,则C上的有理点可由下列关系决定:

证明

[编辑]

伊戈尔·沙法列维奇英语Igor Shafarevich曾猜想说在一个固定的数域上有著固定的维度与极化度(polarization degree)、且在固定的构成的有限集合之外有著良好简化(Good reduction)的交换簇英语Abelian variety之上,只有有限个同构类,而这即是沙法列维奇的有限猜想。[3]阿列克谢·帕辛英语Aleksei Parshin使用现在称为帕辛技巧的方法,指出说沙法列维奇的有限猜想可推出莫德尔猜想。[4]

格尔德·法尔廷斯利用了泰特猜想英语Tate conjecture一个情况已知的简化,以及包括内伦模型英语Néron model等源自代数几何的工具,证明了沙法列维奇的有限猜想。[5]而这证明的主要想法,是利用西葛尔模簇英语Abelian variety来比较高度函数英语Height function中的法尔廷斯高度及古典高度。[a]

后来的证明

[编辑]

可得结果

[编辑]

法尔廷斯在1983年的论文可推出一系列先前受猜想的内容:

  • 莫德尔猜想,也就是在代数数域上亏格数大于1的曲线只有有限多个有理点;
  • 同类定理(Isogeny theorem),也就是带有同构泰特模英语Tate module(也就是带有伽罗瓦作用的Q-模)的交换簇英语Abelian variety同类英语Isogeny的。

法尔廷斯定里的一个应用是费马最后定理的弱形式:对于任意大于等于4的固定整数nan + bn = cn至多只有有限的原始整数解(也就是彼此互质的解),而这是因为对于这样的n而言,费马曲线英语Fermat curve xn + yn = 1的亏格数大于1之故。

推广

[编辑]

由于莫德尔-韦伊定理英语Mordell–Weil theorem之故,因此法尔廷斯定理可重述为一个关于带有交换簇A的有限生成子群Γ的曲线C的交点的叙述,因此可透过将其中交换簇A改成半交换簇(semiabelian variety)、将C改成A的任意子簇,以及将Γ改成A的任意有限秩子集的作法,将之推广为莫德尔-朗猜想英语Mordell–Lang conjecture,而这猜想由麦克·麦奎兰英语Michael McQuillan (mathematician)[9]在洛朗(Laurent)、雷诺、辛追(Hindry)、波伊大英语Paul Vojta以及法尔廷斯等人成就的基础上,于1995年所证明。

法尔廷斯定理的另一个高维推广是邦别里-朗猜想英语Bombieri–Lang conjecture,也就是若X是一个在数域k上的伪典型簇英语pseudo-canonical variety(也就是“一般类型”的代数簇),那么X(k)在扎里斯基拓扑的意义上并非稠密的。保罗·波伊大英语Paul Vojta并提出了更加一般化的猜想。

函数域上的莫德尔猜想由尤里·马宁[10]以及汉斯·格劳尔特英语Hans Grauert[11]所证明,在1990年,罗伯特·F·科尔曼找到并修补了马宁证明中的一个漏洞。[12]

注解

[编辑]
  1. ^ “法尔廷斯借由西葛尔模空间的方法比较了高度的两种表记…这是证明的主要想法”(原文:"Faltings relates the two notions of height by means of the Siegel moduli space.... It is the main idea of the proof.")Bloch, Spencer. The Proof of the Mordell Conjecture. The Mathematical Intelligencer. 1984, 6 (2): 44. S2CID 306251. doi:10.1007/BF03024155. 

引用

[编辑]

参考资料

[编辑]