数学上,可以表达为两个整数比的数(, )被定义为有理数,例如,0.75(可被表达为);整数和整数分数统称为有理数。
与有理数相對的是无理数,如无法用整数比表示。
有理数与分數形式的区别,分數形式是一种表示比值的记法,如 分數形式是无理数。
所有有理数的集合表示为Q,Q+,或。定义如下:
有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。
有理数在英文中称作rational number,来自拉丁语rationalis,意为理性的;词根ratio,拉丁语意为理性、计算。[1]代表“比例”的英文ratio一词在历史上出现得要比有理数(rational number)一词更晚,前者最早有记录是1660,而后者是1570年。[2][3]
有理数集对加、减、乘、除四则运算是封闭的,亦即有理數加、减、乘、除有理數的結果仍為有理數。有理数的加法和乘法如下:
两个有理数和相等当且仅当
有理数中存在加法和乘法的逆:
- 时,
两数相乘,同号得正异号得负,并把绝对值相乘。
古埃及分数是分子为1、分母为正整数的有理数。每个有理数都可以表达为有限个两两不等的古埃及分数的和。例如:
对于给定的正有理数,存在无穷多种表达成有限个两两不等的古埃及分数之和的方法。
数学上可以将有理数定义为建立在整数的有序对上的等价类,这里不为零。我们可以对这些有序对定义加法和乘法,规则如下:
为了使,定义等价关系如下:
这种等价关系与上述定义的加法和乘法上是一致的,而且可以将Q定义为整数有序对关于等价关系~的商集:。例如:两个对和是相同的,如果它们满足上述等式。(这种构建可用于任何整数环,参见商域。)
Q上的大小可以定义为:
- 当且仅当
- 并且
- 并且
然後是指但。亦可在“小于”概念之上引入“大于”的概念,即:当且仅当。此排序中,每一对有理数之间皆可比較,必有且仅有以下关系之一:
- ,,。
又滿足传递性:若,且,则。所以以上定義的大小關係是全序关系。
有理數集的序還滿足稠密性:若,则必存在有理数,满足,且。[4]
集合,以及上述的加法和乘法运算,构成域,即整数的商域。
有理数是特征为0的域最小的一个:所有其他特征为0的域都包含的一个拷贝(即存在一个从到其中的同构映射)。
的代数闭包,例如有理数多项式的根的域,是代数数域。
所有有理数的集合是可数的,亦即是說的基數(或勢)與自然數集合相同,都是阿列夫數,這是因為可以定義一個從有理數集映至自然數集合的笛卡爾積 的單射函數,而是可數集合之故。因为所有实数的集合是不可数的,所以从勒贝格测度来看,可以认为绝大多数实数不是有理数。
有理数的序是个稠密序:任何两个有理数之间存在另一个有理数,事实上是存在无穷多个。此外,有理數集也沒有最大和最小元素,所以是無端點的可數稠密全序(dense linear order without endpoints)。康托爾同構定理說明,任何無端點的可數稠密全序必定序同構於有理數的序,換言之,若不辨同構之異,則有理數的大小序是唯一具此性質的序結構。
有理数是实数的稠密子集:每个实数都有任意接近的有理数。一个相关的性质是,僅有理数可化為有限连分数。
依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。采用度量,有理数构成一个度量空间,这是上的第三个拓扑。幸运的是,所有三个拓扑一致并将有理数转化到一个拓扑域。有理数是非局部紧致空间的一个重要的实例。这个空间也是完全不连通的。有理数不构成完备的度量空间;实数是的完备集。
除了上述的绝对值度量,还有其他的度量将转化到拓扑域:
设是素数,对任何非零整数设,这里是整除的的最高次幂;
另外。对任何有理数,设。
则在上定义了一个度量。
度量空间不完备,它的完备集是p进数域。
|
---|
可數集 |
- 自然数 ()
- 整数 ()
- 有理数 ()
- 規矩數
- 代數數 ()
- 周期
- 可計算數
- 可定义数
- 高斯整數 ()
- 艾森斯坦整数
|
---|
合成代數 |
- 可除代數:实数 ()
- 複數 ()
- 四元數 ()
- 八元数 ()
|
---|
凯莱-迪克森结构 |
- 实数 ()
- 複數 ()
- 四元數 ()
- 八元数 ()
- 十六元數 ()
- 三十二元數
- 六十四元數
- 一百二十八元數
- 二百五十六元數……
|
---|
分裂 形式 | |
---|
其他超複數 | |
---|
其他系統 | |
---|
|
|