十六元數

维基百科,自由的百科全书
跳转至: 导航搜索
各种各样的
基本

\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}

正數 \begin{smallmatrix} \mathbb{R}^+ \end{smallmatrix}
自然数 \begin{smallmatrix} \mathbb{N} \end{smallmatrix}
正整數 \begin{smallmatrix} \mathbb{Z}^+ \end{smallmatrix}
小数
有限小数
无限小数
循环小数
有理数 \begin{smallmatrix} \mathbb{Q} \end{smallmatrix}
代數數 \begin{smallmatrix} \mathbb{A} \end{smallmatrix}
实数 \begin{smallmatrix} \mathbb{R} \end{smallmatrix}
複數 \begin{smallmatrix} \mathbb{C} \end{smallmatrix}
高斯整數 \begin{smallmatrix} \mathbb{Z}[i] \end{smallmatrix}

负数 \begin{smallmatrix} \mathbb{R}^- \end{smallmatrix}
整数 \begin{smallmatrix} \mathbb{Z} \end{smallmatrix}
负整數 \begin{smallmatrix} \mathbb{Z}^- \end{smallmatrix}
分數
單位分數
二进分数
規矩數
無理數
超越數
虚数
二次无理数
艾森斯坦整数 \begin{smallmatrix} \mathbb{Z}[\omega] \end{smallmatrix}

延伸

雙複數
四元數 \begin{smallmatrix} \mathbb{H} \end{smallmatrix}
共四元數
八元數 \begin{smallmatrix} \mathbb{O} \end{smallmatrix}
超數
上超實數

超复数
十六元數 \begin{smallmatrix} \mathbb{S} \end{smallmatrix}
複四元數
大實數
超實數 \begin{smallmatrix} {}^\star\mathbb{R} \end{smallmatrix}
超現實數

其他

对偶数
雙曲複數
序数
質數
同餘
可計算數
阿列夫数

公稱值
超限数
基數
P進數
規矩數
整數數列
數學常數

圓周率 \begin{smallmatrix} \pi \end{smallmatrix}
 = 3.141592653…
自然對數的底 \begin{smallmatrix} e \end{smallmatrix}
 = 2.718281828…
虛數單位 \begin{smallmatrix} i \end{smallmatrix}
 = \begin{smallmatrix} +\sqrt{-1} \end{smallmatrix}
無窮大 \begin{smallmatrix} \infty \end{smallmatrix}

十六元數透過實數形成16維的向量空間。彷如八元數,其乘法不符合交換律結合律。然而,与八元数不一样,十六元数甚至不符合交错性。尽管如此,十六元数仍然符合幂结合性

十六元數的16個單元十六元數是: 1, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14e15,


單元乘數表如下:


× 1
e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12
e13
e14
e15
1
1
e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12
e13
e14
e15
e1
e1
-1
e3
-e2
e5
-e4
-e7
e6
e9
-e8
-e11
e10
-e13
e12
e15
-e14
e2
e2
-e3
-1
e1
e6
e7
-e4
-e5
e10
e11
-e8
-e9
-e14
-e15
e12
e13
e3
e3
e2
-e1
-1
e7
-e6
e5
-e4
e11
-e10
e9
-e8
-e15
e14
-e13
e12
e4
e4
-e5
-e6
-e7
-1
e1
e2
e3
e12
e13
e14
e15
-e8
-e9
-e10
-e11
e5
e5
e4
-e7
e6
-e1
-1
-e3
e2
e13
-e12
e15
-e14
e9
-e8
e11
-e10
e6
e6
e7
e4
-e5
-e2
e3
-1
-e1
e14
-e15
-e12
e13
e10
-e11
-e8
e9
e7
e7
-e6
e5
e4
-e3
-e2
e1
-1
e15
e14
-e13
-e12
e11
e10
-e9
-e8
e8
e8
-e9
-e10
-e11
-e12
-e13
-e14
-e15
-1
e1
e2
e3
e4
e5
e6
e7
e9
e9
e8
-e11
e10
-e13
e12
e15
-e14
-e1
-1
-e3
e2
-e5
e4
e7
-e6
e10
e10
e11
e8
-e9
-e14
-e15
e12
e13
-e2
e3
-1
-e1
-e6
-e7
e4
e5
e11
e11
-e10
e9
e8
-e15
e14
-e13
e12
-e3
-e2
e1
-1
-e7
e6
-e5
e4
e12
e12
e13
e14
e15
e8
-e9
-e10
-e11
-e4
e5
e6
e7
-1
-e1
-e2
-e3
e13
e13
-e12
e15
-e14
e9
e8
e11
-e10
-e5
-e4
e7
-e6
e1
-1
e3
-e2
e14
e14
-e15
-e12
e13
e10
-e11
e8
e9
-e6
-e7
-e4
e5
e2
-e3
-1
e1
e15
e15
e14
-e13
-e12
e11
e10
-e9
e8
-e7
e6
-e5
-e4
e3
e2
-e1
-1

延伸閱讀[编辑]

  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions, Applied Mathematics and Computation 28:47-72 (1988)
  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions - Further results, Applied Mathematics and Computation, 84:27-47 (1997)
  • Imaeda, K., Imaeda, M.: Sedenions: algebra and analysis, Applied Mathematics and Computation, 115:77-88 (2000)

參見[编辑]