超現實數

维基百科,自由的百科全书
跳到导航 跳到搜索
各种各样的
基本

NumberSetinC.svg

延伸
其他

圓周率
自然對數的底
虛數單位
無窮大

數學上,超現實數系統(英語:Surreal Numbers)是一種連續統,其中含有實數以及無窮量,即無窮)量,其絕對值大(小)於任何正實數。超現實數與實數有許多共同性質,包括其全序關係「≤」以及通常的算術運算(加減乘除);也因此,它們構成了有序域[註 1]。在嚴格的集合論意義下,超現實數是可能出現的有序域中最大的;其他的有序域,如有理數域實數域有理函數域列維-奇維塔域英语Levi-Civita field上超實數域英语Superreal number超實數域等,全都是超現實數域的子域。超現實數域也包含可達到的、在集合論裡構造過的所有超限序數

超现实数树的可视化。

超現實數是由約翰·何頓·康威(John Horton Conway)所定義和構造的。這個名稱早在1974年便已由高德納(Donald Knuth)在他的書《研究之美》[註 2][1][2]中就被引進了。《研究之美》是一部中短篇數學小說,而值得一提的是,這種把新的數學概念在一部小說中提出來的情形是非常少有的。在這部由對話體寫成的著作裡,高德納造了「surreal number」一詞,用來指稱康威起初只叫做「number」(數)的這個新概念。康威樂於採用新的名稱,後來在他1976年的著作《論數字與博弈》(On Numbers and Games)中就描述了超現實數的概念並使用它來進行了一些博弈分析。

概述[编辑]

康威[3]使用递归构造了超现实数,其中每个数都是两个数集构成的序对,记为 。这两个集合要求 里的每个元素都严格小于每个 里的元素。不同的序对可能表达同样的数字:

整数及二进分数[编辑]

让我们先来看几个简单的例子。

因此整数都是超现实数。(以上几行是定义而非等式。)

至此我们可以通过超现实数定义二进分数(分母为2的幂次的分数)。

其他实数[编辑]

为了定义更多的实数,我们可以将使用无限的左右集合:,事实上可以同样地使用二进制展开的方法定义出所有实数。

无穷数[编辑]

根据归纳法,我们可以构造出 等无穷大的数, 等无穷小数。以上超现实数皆不属于实数。

更多的数[编辑]

我们定义

,那么 ,这在直观上等阶于“是在第天中出生的”。

那么我们可以观察发现:

  • ,其中

我们将超现实数集合称作

序关系[编辑]

给定 ,我们(递归地)定义 当且仅当以下两命题同时成立:

  • 没有一个 符合
  • 没有一个 符合

那么可以自然地定义 。可以证明,这样的二元关系是一个全序关系

我们分别将 称为 负、 正、 非正、 非负。

我们定义 表示 同时不成立。事实上这样的二元关系在超现实数中不可能存在,但是这个关系会在之后的博弈章节出现。

运算[编辑]

加法[编辑]

我们定义超现实数之间的加法,其中

加法逆元[编辑]

我们定义负号(加法逆元)为 ,其中

可以验证这两个运算构成了(真类上的)阿贝尔群

乘法[编辑]

我们定义乘法运算为,其中

乘法逆元[编辑]

我们定义(正数的)乘法逆元,这样除法就是 。我们可以发现这个定义是递归的,但是实际上这个数字是良定义的:我们取 那么 会有一个 作为左项,导致了 会是一个右项。这又意味着 作为左项、 作为右项,以此类推,所以我们有 (考虑两边的序列在实数中分别收敛到 ,因此是相容的)。

对于负数,我们定义

子集对应[编辑]

有理数实数序数分别是超现实数的子集。

有理数[编辑]

所有二进分数都可以定义为超现实数,而所有分数都可以表示为两个整数之比,因此所有有理数都可以表示为超现实数。

实数[编辑]

在定义出了有理数之后,使用戴德金分割可以立刻将实数映射到超现实数中。

假设,其中 ,那么立刻可知存在 的一个超现实数表示,其中 是有理数到超现实数的域同態。

序数[编辑]

我们将所有序数定义为小于它的序数构成的集合[4]。所有序数的全体记为,那么我们有:

这样的同态可以保持序关系的结构,但是并不能保证算术的一一对应,比如 这一式子的值在序数中的结果是 ,而在超现实数中则是 .

博弈[编辑]

如果去除超现实数定义中对所有 的约定,那么这样(递归)定义出来的真类被称做游戏[5]。对其仍然可以(一模一样的)定义加法、加法逆元以及比较。

显然,所有的超现实数都是游戏,但并非所有游戏都是超现实数,例如 就不是,其满足

可以发现,所有的游戏都体现了一个两人轮流、确定、公开的博弈游戏,其中左集合表示第一位玩家(下称左玩家)可以走到的局面,右集合则表示第二位玩家(下称右玩家)的选择,不能操作者负。

两个游戏的和的意义就是同时进行两个游戏,而每个玩家选择其中一个进行操作,不能操作者负。

我们可以发现,这个游戏的胜负取决于 的相对关系。

  • ,则后手必胜。
  • ,则左玩家必胜。
  • ,则右玩家必胜。
  • ,则先手必胜(英語:fuzzy game)。

有以下这些特殊的游戏[6]

可以发现,关于他们有这么几个性质:

  • (比所有超现实数更接近0)

可以用于分析复杂的游戏。

暫譯術語[编辑]

  • 超現實數(Surreal)
  • 無窮量(Infinitesimal)
  • 格羅滕迪克宇集

注释[编辑]

  1. ^ 但當初在使用馮諾伊曼-博內斯-哥德爾集合論來建立超現實數理論時,全體超現實數並不構成集合,而只構成真類,因此使用「」(field)此一術語看來不甚精確;在嚴格區分集合和真類顯然重要時,有些作者會使用首字母大寫的「Field」或全大寫的「FIELD」來指稱那些其實是真類,但又具有域的算術性質的對象。暫時可稱作「琙」(音同域)或「真類域」。如想得到一個真正的、作為集合的域,可以把構造限制在格羅滕迪克宇集中,這樣的話就得到一個集合,其基數為一種強不可達基數;又或者使用另一種形式的集合論,在其中,任何超限遞歸構造總要在可數序數(比如 ,即艾普塞朗數)處停下。
  2. ^ Surreal number正式中文譯名尚未出現,但英語Surreal英语Surreal一詞與Surrealism聯繫起來的話,在中文裡後者譯為「超現實主義」,因此「超現實數」便作為surreal number的可能譯名。

来源[编辑]

  1. ^ 《研究之美》(Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness)
  2. ^ 現在本書的中文譯文已經在大陸出版,見存档副本. [2012-05-10]. (原始内容存档于2012-03-16). 
  3. ^ Conway, John H. On Numbers and Games 2. CRC Press. 2000-12-11 [1976]. ISBN 9781568811277. (原始内容存档于2018-03-27) (英语). 
  4. ^ W., Weisstein, Eric. Ordinal Number. mathworld.wolfram.com. [2018-03-27]. (原始内容存档于2017-11-10) (英语). 
  5. ^ E. Berlekamp; J. H. Conway; R. Guy. Winning Ways for your Mathematical Plays I. Academic Press. 1982. ISBN 0-12-091101-9. 
    E. Berlekamp; J. H. Conway; R. Guy. Winning Ways for your Mathematical Plays II. Academic Press. 1982. ISBN 0-12-091102-7. 
  6. ^ W., Weisstein, Eric. Surreal Number. mathworld.wolfram.com. [2018-03-27]. (原始内容存档于2017-08-14) (英语).