超实数 (非标准分析)

维基百科,自由的百科全书
跳转至: 导航搜索

也就是說超實數集同樣滿足加法交換律。

無窮小量的概念是否嚴格呢?此問題可以追溯到古希臘數學:數學家們如歐幾里得阿基米德等,為了在一些證明裡繞開無窮小量的爭議以保證嚴格性,而采用了窮竭法等其它說明方式[1]。而亞伯拉罕·魯濱遜在1960年代證明了,

超實數系統是相容的,當且僅當實數系統是相容的

換句話說,如果對實數的使用没有懷疑,那也可以放心使用超實數。在處理數學分析的問題時對超實數、尤其是傳達原理的使用,通稱為非標準分析

参考资料[编辑]

  1. ^ Ball, p. 31
  • Ball, W.W. Rouse. A Short Account of the History of Mathematics 4th ed. [Reprint. Original publication: London: Macmillan & Co., 1908]. New York: Dover Publications. 1960: 50–62. ISBN 0-486-20630-0.