超实数 (非标准分析)

维基百科,自由的百科全书
跳转至: 导航搜索
各种各样的
基本

正數
自然数
正整數
小数
有限小数
无限小数
循环小数
有理数
代數數
实数
複數
高斯整數

负数
整数
负整數
分數
單位分數
二进分数
規矩數
無理數
超越數
虚数
二次无理数
艾森斯坦整数

延伸

雙複數
四元數
共四元數
八元數
超數
上超實數

超复数
十六元數
複四元數
大實數
超實數
超現實數

其他

对偶数
雙曲複數
序数
質數
同餘
可計算數
阿列夫数

公稱值
超限数
基數
P進數
規矩數
整數數列
數學常數

圓周率  = 3.141592653…
自然對數的底  = 2.718281828…
虛數單位  = 
無窮大

超實數系統是為了嚴格處理無窮量(無窮大量無窮小量)而提出的。自從微積分的發明以來,數學家、科學家和工程師等(包括牛頓萊布尼茲在內)就一直廣泛地用無窮小量等概念。超實數集,或稱為非標準實數集,記爲,是實數集  的一個擴張;其中含有一種數,它們大於所有如下形式的數:

這可以解釋為無窮大;而它們的倒數就作為無窮小* 滿足如下性質:任何關於  的一階命題如果成立,則對 * 也成立。這種性質稱為傳達原理。舉例來說,實數集的加法交換律

  • (x∈ )(∀y∈ )(x + y = y + x)

是關於  的一階命題,因此也成立着:

  • (x∈ *)(∀y∈ *)(x + y = y + x)

也就是說超實數集同樣滿足加法交換律。

無窮小量的概念是否嚴格呢?此問題可以追溯到古希臘數學:數學家們如歐幾里得阿基米德等,為了在一些證明裡繞開無窮小量的爭議以保證嚴格性,而采用了窮竭法等其它說明方式[1]。而亞伯拉罕·魯濱遜在1960年代證明了,

超實數系統是相容的,當且僅當實數系統是相容的

換句話說,如果對實數的使用没有懷疑,那也可以放心使用超實數。在處理數學分析的問題時對超實數、尤其是傳達原理的使用,通稱為非標準分析

参考资料[编辑]

  1. ^ Ball, p. 31
  • Ball, W.W. Rouse. A Short Account of the History of Mathematics 4th ed. [Reprint. Original publication: London: Macmillan & Co., 1908]. New York: Dover Publications. 1960: 50–62. ISBN 0-486-20630-0.