整數數列

维基百科,自由的百科全书
跳转至: 导航搜索
各种各样的
基本

正數
自然数
正整數
小数
有限小数
无限小数
循环小数
有理数
代數數
实数
複數
高斯整數

负数
整数
负整數
分數
單位分數
二进分数
規矩數
無理數
超越數
虚数
二次无理数
艾森斯坦整数

延伸

雙複數
四元數
共四元數
八元數
超數
上超實數

超复数
十六元數
複四元數
大實數
超實數
超現實數

其他

对偶数
雙曲複數
序数
質數
同餘
可計算數
阿列夫数

公稱值
超限数
基數
P進數
規矩數
整數數列
數學常數

圓周率  = 3.141592653…
自然對數的底  = 2.718281828…
虛數單位  = 
無窮大

整數數列,是指一個由整數形成的數列

有些整數數列可以用公式表示,有些公式是用各項之間的關係來表示,例如數列0, 1, 1, 2, 3, 5, 8, 13, …(斐波那契数列)的前二項分別是0和1,二項數值相加就可以得到下一項的值;有些數列則是有可直接計算各項數值的公式,例如數列0, 3, 8, 15, … 的第n項公式為n2 − 1。

有些整數數列只能列出其中的數都有的特性,但無法用公式來表示數列中的數值。以完全數為例,可以計算一個數的除數函數來判斷是否是完全數,但沒有公式可以計算各項的數值。

可計算數列及可定義數列[编辑]

若一個整數數列,存在演算法可以針對任意數值的n,計算an,此數列為可計算數列computable sequence)。若一個整數數列存在一個敘述P(x) ,對整數數列x成立,對其他的整數數列不成立,則此數列為可定义數列definable sequence)。可計算數列及可定义數列都是可數集,可計算數列為可定义數列的子集,因此一數列可以是可定义數列而不是可計算數列。

所有的整數數列是不可數集,集合的連續統相等,因此大部份的整數數列都是不可計算且不可定义的數列。

完整數列[编辑]

完整數列英语complete sequence是指一種特別的數列,所有整數都可以用數列中部份數值的和表示,而且每一項最多只出現一次,例如由2的乘幂形成的數列1, 2, 4, 8, 16, 32, 64, …就是完整數列。

相關條目[编辑]

外部連結[编辑]