交叉數不等式

維基百科,自由的百科全書

交叉數不等式是數學的圖論分支中的一條不等式,給出了一幅畫在平面上時交叉數下界;這一結論又名交叉數引理。給定一幅,該下界可由其數和頂點數計算出。不等式斷言,若邊數與頂點數的比值大於某個常數,則交叉數不小於乘以另一個固定的常數。

交叉數不等式在超大規模集成電路設計與組合幾何方面有應用。其由奧伊陶伊·米克洛什英語Miklós Ajtai瓦茨拉夫·赫瓦塔爾英語Václav Chvátal蒙提·紐邦英語Monty Newborn塞邁雷迪·安德烈四人[1]以及湯姆森·雷頓英語F. Thomson Leighton[2]分別獨立發現

敍述及歷史[編輯]

交叉數不等式說明,若無向簡單圖恰有個頂點和條邊,且,則交叉數(即將畫在平面上時,邊的交點數的最小可能值)滿足不等式

式中的常數為截至2019年所知最優。此為伊爾·艾克曼(Eyal Ackerman)的結果。[3] 先前常數較弱的結果,可見Pach & Tóth (1997)和Pach 等人 (2006)。[4][5] 條件中的常數也可以縮少至更佳的,但代價是要換成較差的。此版本的證明見後文。

注意式中交叉數兩兩交叉數不同。如Pach & Tóth (2000)指出,兩兩交叉數係指相交邊對的最小可能數,而交叉數係指由任意兩邊所成交叉點的最小可能數,從而。(一些作者可能假定圖的畫法中不允許兩條邊交叉多於一次,因此需要作出區分。)[6]

應用[編輯]

雷頓研究交叉數,是為了理論計算機科學中,超大型積體電路設計方面的應用。[2]

此後,Székely (1997)發現此不等式在關聯幾何方面有應用,能夠簡短地證明一些重要定理,例如塞邁雷迪-特羅特定理,其在已知平面上的點數和直線數時,給出關聯數(即點線對的數目,其中)的上界。證明方法是,先構造一幅圖,其頂點即為平面上的點,而邊則為同一直線上相鄰兩個關聯點之間的線段。倘若關聯數大於塞邁雷迪-特羅特的上界,則利用交叉數不等式可證,該圖的交叉數必多於直線的二元組數,但此為不可能(因為兩條直線只能交於獨一點)。此不等式同樣適用於證明貝克定理英語Beck's theorem (geometry),即若平面上個點中,不存在線性多(即)個點共線,則其兩兩連線產生平方多(即)條不重合的直線,其中為正常數。[7] 塔馬爾·戴伊英語Tamal Dey類似地證明了幾何k-集英語K-set (geometry)數的上界。[8]

證明[編輯]

引理[編輯]

先利用歐拉公式證明以下初步估計:若圖G恰有n個頂點和e條邊,則

考慮的一個僅得個交叉的畫法。可以在每個交叉刪走其中一條邊,從而消除所有交叉。於是,剩下的邊組成一幅平面圖(因為不再有交叉),其邊數至少為,頂點數則仍舊為。根據平面圖的歐拉公式,所以上述估計成立。(更準確來說,對於,有。)

交叉數不等式[編輯]

有了上述引理,就可以利用概率方法英語probabilistic method證明原來的交叉數不等式。設為待定的概率參數,依如下步驟構造隨機子圖:1. 以概率獨立隨機選取的各個頂點;2. 若中一條邊的兩個頂點皆被選中,則在子圖中構造連接這兩個頂點的邊。分別以表示的邊數、頂點數和交叉數。由於的子圖,的畫法已含有的畫法。由引理,得

期望值,可知

由於中每個頂點選入中的概率為,有。類似知中每條邊入選的概率為(因為其兩端皆要入選),所以。最後,在的畫法中,每個交叉有的概率落入,因為每個交叉牽涉四個頂點。(若從同一個頂點出發畫出兩條邊有交叉,則不妨將兩條邊第一次相交以後的部分對調,從而令交叉的數目變少。由於所考慮的畫法僅得個交叉,無法再減少交叉,所以每個交叉必由兩條無公共端點的邊組成。)因此,,於是上式可寫成

現在取(已設),移項化簡得不等式

以上論證對於的情況可以將常數由改進到[3]

推廣[編輯]

若圖的圍長大於Pach,Spencer & Tóth (2000)將不等式改進成[9]

卡里姆·阿迪普拉西托將不等式推廣到高維情況:[10]單體複形,且其維面數為維面數為,滿足,則當映射到(將圖畫在平面上的高維類比)時,相交的維面對的數目至少為

參考資料[編輯]

  1. ^ Ajtai, M.; Chvátal, V.; Newborn, M. M.; Szemerédi, E., Crossing-free subgraphs, Theory and practice of combinatorics, North-Holland Mathematics Studies 60, North-Holland, Amsterdam: 9–12, 1982, MR 0806962 (英語) .
  2. ^ 2.0 2.1 Leighton, T., Complexity Issues in VLSI, Foundations of Computing Series, Cambridge, MA: MIT Press, 1983 (英語) .
  3. ^ 3.0 3.1 Ackerman, Eyal, On topological graphs with at most four crossings per edge, Computational Geometry, 2019, 85: 101574, 31, MR 4010251, arXiv:1509.01932可免費查閱, doi:10.1016/j.comgeo.2019.101574 (英語) .
  4. ^ Pach, János; Tóth, Géza, Graphs drawn with few crossings per edge, Combinatorica, 1997, 17 (3): 427–439, MR 1606052, doi:10.1007/BF01215922 (英語) .
  5. ^ Pach, János; Radoičić, Radoš; Tardos, Gábor; Tóth, Géza, Improving the crossing lemma by finding more crossings in sparse graphs, Discrete and Computational Geometry, 2006, 36 (4): 527–552, MR 2267545, doi:10.1007/s00454-006-1264-9可免費查閱 (英語) .
  6. ^ Pach, János; Tóth, Géza, Which crossing number is it anyway?, Journal of Combinatorial Theory, Series B, 2000, 80 (2): 225–246, doi:10.1006/jctb.2000.1978 (英語) .
  7. ^ Székely, L. A., Crossing numbers and hard Erdős problems in discrete geometry, Combinatorics, Probability and Computing, 1997, 6 (3): 353–358, MR 1464571, doi:10.1017/S0963548397002976 (英語) .
  8. ^ Dey, T. K., Improved bounds for planar k-sets and related problems, Discrete and Computational Geometry, 1998, 19 (3): 373–382, MR 1608878, doi:10.1007/PL00009354可免費查閱 (英語) 
  9. ^ Pach, J.; Spencer, J.; Tóth, G., New bounds on crossing numbers, Discrete and Computational Geometry, 2000, 24 (4): 623–644, MR 1799605, doi:10.1145/304893.304943 (英語) .
  10. ^ Adiprasito, Karim. Combinatorial Lefschetz theorems beyond positivity. 2018-12-26. arXiv:1812.10454v3可免費查閱 [math.CO] (英語).