跳至內容

愛因斯坦-嘉當理論

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

愛因斯坦-嘉當理論(英語:Einstein-Cartan theory)是理論物理學中將廣義相對論延伸以正確處理自旋角動量。此理論以物理學家阿爾伯特·愛因斯坦以及埃利·嘉當Élie Cartan)為名。

作為經典物理中的主要理論,廣義相對論卻有一個缺點:其無法描述「自旋軌道耦合」(spin-orbit coupling),亦即內稟角動量intrinsic angular momentum)(自旋)與軌道角動量orbital angular momentum)間的交換。存在有定量的理論證明,其顯示:當物體具有自旋性質時,廣義相對論必須要擴充成愛因斯坦-嘉當理論。

實驗上的效應由於太小,目前尚無法觀測得到。

歷史

[編輯]

該理論最早由埃利·嘉當(Élie Cartan)於 1922 年提出,並在隨後的幾年中得到了闡述。阿爾伯特愛因斯坦於 1928 年開始加入該理論,當時他試圖將撓率與電磁場張量匹配作為統一場論的一部分,但沒有成功。這一思路引導他得出了相關但不同的遠程並行理論。

Dennis Sciama和Tom Kibble在20世紀60年代獨立地重新審視了該理論,並於1976年發表了一篇重要評論。

愛因斯坦-嘉當理論在歷史上一直被無扭轉理論和布蘭斯-迪克理論等其他替代理論所掩蓋,因為扭轉似乎以犧牲方程式的易處理性為代價,幾乎沒有增加預測的好處。由於愛因斯坦-嘉當理論是純粹經典的,它也沒有完全解決量子重力問題。在愛因斯坦-嘉當理論中,狄拉克方程式變得非線性。最近,人們對愛因斯坦-嘉當理論的興趣已經轉向宇宙學意義,最重要的是,避免了宇宙開始時的重力奇異點。該理論被認為是可行的,並且仍然是物理學界的活躍話題。

該理論間接影響了圈量子重力(並且似乎也影響了扭量理論)。

動機

[編輯]

廣義相對論無法描述自旋軌道耦合的理由根源於黎曼幾何,而廣義相對論是建構於其上。在黎曼幾何中,里奇曲率張量(Ricci curvature tensor)必須是ab對稱的(亦即,)。因此愛因斯坦曲率張量(Einstein curvature tensor)定義為

也必須是對稱的。在廣義相對論中,愛因斯坦曲率張量為局域重力建構了模型,且其(透過重力常數的聯繫)等同於應力-能量張量能量-動量張量(此處我們將能量-動量張量表示為P,是因為廣義相對論中常用來表示能量-動量張量的T在愛因斯坦-嘉當理論留給仿射扭率(affine torsion)。)愛因斯坦曲率張量的對稱性強迫動量張量必須是對稱的。然而,當自旋與軌道角動量進行交換時,根據角動量守恆的廣義式,則知動量張量為不對稱的。

自旋流英語spin current(spin current)之散度——

細節請參考自旋張量英語spin tensor(spin tensor)條目。

因此廣義相對論無法適當地為自旋軌道耦合建構模型。

於1922年,埃利·嘉當提出猜想認為廣義相對論應該被延伸成包括仿射扭率(affine torsion),其允許里奇張量可以是不對稱的。雖然自旋-軌道耦合是重力物理學中相對次要的現象,愛因斯坦–嘉當理論則相當重要,因為

(1) 其顯示出仿射理論,而非度規理論,對於重力能提供更好的描述;
(2) 其解釋仿射扭率的意義,在一些量子重力理論中自然出現;
(3) 其將自旋詮釋為仿射扭率,在幾何意義上是時空介質(spacetime medium)之位錯場(field of dislocations)的一項連續近似。

將黎曼幾何擴充以包含了仿射扭率則稱為黎曼-嘉當幾何(Riemann–Cartan geometry)。

幾何與表示式

[編輯]

時空物理學的數學基礎是仿射微分幾何(affine differential geometry),其中我們賦予n維微分流形M 一項沿着M上路徑對向量作平行移動的定律。(一微分流形的每個點,我們都有切向量所組成的一個線性空間,不過我們無法將向量移動到其他點,或是去比較M上位於不同兩點上的向量。)平行移動保存了向量間的線性關係;也就是說,若兩向量 在M上同一點,沿着一曲線被平行移動成為向量 ,則兩者的線性組合

+

也平行移動為

+

仿射微分幾何中的平行性(Parallelism)是路徑相依(path-dependent)的;也就是說,如果沿着同起點與同終點之兩相異路徑平行移動一向量,在終點所得的結果向量一般來說是相異的。這樣的差異本質上即為曲率的影響,而曲率在微分幾何中是個中心概念。

愛因斯坦-嘉當重力理論簡介

[編輯]

用標架場重寫愛因斯坦重力理論

[編輯]

用標架場 代替度規場 ,我們可以得到用標架場 (僅考慮內稟坐標系變換是整體Lorentz變換)表示的兩種等價形式的推廣的愛因斯坦重力場運動方程式為:

  • (1)重力場運動方程式第一形式:
  • (2)重力場運動方程式第二形式:

其中:

時,由重力場運動方程式的第二形式得到愛因斯坦重力場運動方程式:

愛因斯坦重力理論與狄拉克電子理論之間的矛盾

[編輯]

考慮電子與重力的作用時,我們需要引入標架仿射聯絡 。在黎曼時空中,存在關係式: ,標架場與標架仿射聯絡不獨立。 因此,黎曼時空中的電子場、電磁場及重力場的運動才方程式為:

(1)電子場運動方程式:

(2)電磁場運動方程式:

(3)重力場運動方程式:

根據電子場運動方程式得到能量-動量流運動方程式為:

根據重力場運動方程式得到能量-動量流運動方程式為:

上述結果表明,從電子場運動方程式得到的能量-動量流運動方程式與從重力場運動方程式得到的能量-動量流運動方程式是不相容的。

有撓時空重力理論(愛因斯坦-嘉當理論)

[編輯]

在有撓時空中,標架場 與標架仿射聯絡 是獨立的,標架場 描述時空的彎曲,標架仿射聯絡 描述時空的扭曲,並且有:

有撓時空中的重力場推廣為重力-自旋場,因此簡化形式的愛因斯坦-嘉當重力-自旋場的運動方程式:

(1)電子場運動方程式:

(2)電磁場運動方程式:

(3)自旋場運動方程式:

(4)重力場運動方程式:

a. 第一形式:

b. 第二形式:

可以證明上述運動方程式是相容的,因此有撓時空的愛因斯坦-嘉當重力-自旋場理論消除了愛因斯坦重力理論與狄拉克電子理論之間的矛盾。

應用

[編輯]
  • 解釋宇宙加速膨脹
  • 解釋先鋒異常
  • 解釋星系轉動曲線
  • 預言帶電物體周圍的重力異常
  • 預言日月食的重力異常

參見

[編輯]

參考文獻

[編輯]