稀土礦物:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
InternetArchiveBot留言 | 贡献
补救3个来源,并将0个来源标记为失效。) #IABot (v2.0.7
把[rare earth mineral]翻譯為中文,雖說這篇在2006年就已經由前輩起頭,但篇幅增加有限。我將[稀土元素]和[白雲鄂博礦區]英文版中部分資料引用,融入這一篇中,並將之前的作品覆蓋。這兩天看到有"2022年古羅斯相關條目偽造事件"宣導,我逐一檢查英文版中所列的礦物,確定沒造假,但是否就包含重要的礦物,請先進們指教。
第1行: 第1行:
{{main|稀土元素}}
{{Missing information|1=稀土矿物的特征、分类、(晶体)结构等|time=2019-12-31T08:20:49+00:00}}
[[File:RareEarthOreUSGOV.jpg|thumb|稀土礦物 (以一枚直徑19[[毫米]]的[[1美分硬幣]]來與礦石做對比)]]
[[File:USGS_rare_earth_oxides_production_graph.PNG|thumb|right|upright=1.5|全球稀土來源 ([[美國]]用淺[[藍色]]表示, 中國用[[紅色]]表示)]]
[[File:Baiyunebo ast 2006181.jpg|thumb|位於中國[[包頭]][[白雲鄂博礦區]]的[[假色]]衛星相片,2006年]]
{{main|稀土金属}}
'''稀土礦物''' ({{Lang-en|Rare-earth mineral}})指主要[[金屬]]成份為一種或多種[[稀土金属]]的[[礦物]],是中國[[改革開放]]後十份重視的[[自然資源|資源]]。由於稀土用途廣泛,<ref>{{cite web |author1=Simon Webb |author2=Lisa Shumaker |author3=Jonathan Oatis |title=U.S. dependence on China's rare earth: Trade war vulnerability |url=https://www.reuters.com/article/us-usa-trade-china-rareearth-explainer/u-s-dependence-on-chinas-rare-earth-trade-war-vulnerability-idUSKCN1TS3AQ |website=Reuters |accessdate=2019-12-31 |archive-date=2019-12-23 |archive-url=https://web.archive.org/web/20191223200213/https://www.reuters.com/article/us-usa-trade-china-rareearth-explainer/u-s-dependence-on-chinas-rare-earth-trade-war-vulnerability-idUSKCN1TS3AQ |dead-url=no }}</ref>故有此一說:「[[中東]]有[[石油]],中國有稀土」。<ref>{{cite web |author1=陳子凌 |title=稀土是中國「秘密武器」? 事實卻不盡然... |url=https://www.mpfinance.com/fin/instantf2.php?node=1558425600156&issue=20190521 |website=[[明報]] |accessdate=2019-12-31 |archive-date=2019-12-31 |archive-url=https://web.archive.org/web/20191231074304/https://www.mpfinance.com/fin/instantf2.php?node=1558425600156&issue=20190521 |dead-url=no }}</ref>[[日本]]一直都想減低對[[進口]]中國稀土礦物的依賴。<ref>歌籃. [https://www.voacantonese.com/a/how-japan-handled-rare-earth-threats-02062019/4943268.html 日本如何成功對抗中國限制稀土貿易“殺手鐧”] {{Wayback|url=https://www.voacantonese.com/a/how-japan-handled-rare-earth-threats-02062019/4943268.html |date=20190607081902 }}. [[美國之音]]. 2019/6/3</ref>


所稱的'''稀土礦物'''({{lang-en|Rare earth mineral}})中,通常會含有一種或是多種[[稀土元素]]的成分。稀土礦物通常與[[鹼]]性至{{le|高鹼性岩石|Peralkaline rock|高鹼性}}[[火成岩]]複合物有關聯,與鹼性[[岩漿]]相關的[[偉晶岩]]、或是存在{{le|碳酸鹽岩|carbonatite|碳酸}}[[深成岩]]中,或是與之有關聯。<ref name=“rare metal”>{{cite journal |last1=Dostal|first1= Jaroslav |last2=|first2= |date=April 2016|title= Rare Metal Deposits Associated with Alkaline/Peralkaline Igneous Rocks
==參考資料==
|url= |journal=ResearchGate |volume= |issue= |pages= |doi= 10.5382/Rev.18.02|access-date=2022-1-7}}</ref>具有[[鈣鈦礦 (結構)|鈣鈦]]礦物相(mineral phase)的岩石是鹼性複合物中稀土元素的共同宿主。<ref>{{cite journal |last1= Campbell|first1= Linda S |last2=Henderson|first2=Paul |date=April 1997|title= Rare Earth Chemistry of Perovskite Group Minerals from the Gardiner Complex, East Greenland
{{reflist}}
|url= |journal=Mineralogical Magazine
|volume= 61|issue= 405|pages=1970212 |doi= 10.1180/minmag.1997.061.405.04|access-date=2022-1-7}}</ref>來自[[地幔]]的碳酸鹽熔體也是稀土的載體。<ref>{{cite book |last1= Yaxley|first1= Gregory M. |last2= Sujoy Ghosh|first2=Sujoy |date= |title= Deep Carbon|url= https://www.cambridge.org/core/books/deep-carbon/co2rich-melts-in-earth/D59E43A67373FD4BA68E2D7969F1614F|location= 6 - CO2-Rich Melts in Earth
|quote=They are also of particular economic importance as hosts or sources of many critical metals, including the rare earth elements (REEs) Nb, Ta, P, and others.|publisher= Cambridge University Press|page=129 - 162 |isbn= |author-link= }}</ref>與鹼性[[岩漿作用]]相關的[[熱液系統|熱液]]礦床含有多種稀土礦物。<ref name=“rare metal”/>

而稀土元素是一組共17種,具有光澤,但之間難以區別的銀白色軟性重金屬。<ref name="ASella2016">Professor of Chemistry at [[University College London]], [[Andrea Sella]], {{YouTube|UvQMiqqzcZE |Andrea Sella: "Insight: Rare-earth metals"}}, Interview on [[TRT World]] / Oct 2016, minutes 4:40 - ff.</ref><ref>{{cite book|title=The Elements|author=T Gray|publisher=Black Dog & Leventhal|year=2007|pages=118–122|chapter=Lanthanum and Cerium}}</ref>
雖然名為稀土元素,但實際上這些元素在地殼中的數量相對豐富,鈰是地球中排名第25最豐富的元素(參見[[地球的地殼元素豐度列表|地殼元素豐富度列表]])佔68百萬分率,數量超過[[銅]]。由於稀土元素具有的[[地球化學]]特性,它們通常是呈分散狀態,而不常有高濃度的稀土礦物存在。因此世界上少有經濟上值得開採的礦場(因此而得「稀土」之名)。<ref name="Haxel02">{{cite web|url=http://pubs.usgs.gov/fs/2002/fs087-02/fs087-02.pdf|title=Rare Earth Elements—Critical Resources for High Technology|author=Haxel G.|author2=Hedrick J.|date=2002|publisher=United States Geological Survey|others=Edited by Peter H. Stauffer and James W. Hendley II; Graphic design by Gordon B. Haxel, Sara Boore, and Susan Mayfield|id=USGS Fact Sheet: 087‐02|access-date=2012-03-13|quote=However, in contrast to ordinary base and [[precious metals]], REE have very little tendency to become concentrated in exploitable ore deposits. Consequently, most of the world's supply of REE comes from only a handful of sources.|author3=Orris J.}}</ref>

[[中國]]的儲藏量佔全世界的36.7%,<ref name="gu">{{cite news|url=https://www.theguardian.com/environment/2010/dec/26/rare-earth-metals-us|title=Rare earth metals mine is key to US control over hi-tech future: Approval secured to restart operations, which could be crucial in challenging China's stranglehold on the market|date=26 December 2010|work=The Guardian|author=Suzanne Goldenberg|location=London}}</ref>但中國的產量曾佔全世界的95%以上,<ref name=":2">{{Cite web|url=https://pubs.usgs.gov/of/2011/1042|title=USGS Report Series 2011–1042: China's Rare-Earth Industry|last=Tse|first=Pui-Kwan|website=pubs.usgs.gov|access-date=2018-04-04}}</ref>在2017年佔全世界的81%。到2021年中國的產量佔全世界的60.63%,而同年[[美國]]的產量排名第2,佔比為15.52%。<ref>{{cite web| url =https://www.statista.com/statistics/270277/mining-of-rare-earths-by-country/| title = Distribution of rare earths production worldwide as of 2021, by country| publisher = statista| date =2022-03-04| accessdate =2022-06-12}}</ref>

中國的[[白雲鄂博礦區]]是世界已知最大的稀土礦物蘊藏區。<ref name="Distillations">{{cite web |title=Rare Earths: The Hidden Cost to Their Magic" (Part 2), Distillations Podcast and transcript, Episode 242 |url=https://www.sciencehistory.org/distillations/podcast/rare-earths-the-hidden-cost-to-their-magic |website=Science History Institute|date=June 25, 2019 |access-date=2019-8-28}}</ref>在2005年,這個礦區的稀土元素產量曾高達全世界的45%。<ref>{{cite journal
| title = The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China
| author = Lawrence J. Drewa, Meng Qingrunb and Sun Weijun
| journal = [[Lithos (journal)|Lithos]]
| volume = 26
| issue = 1–2
| pages = 43–65
| year = 1990
| doi = 10.1016/0024-4937(90)90040-8 }}</ref><ref>{{cite journal
| title = Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis
| author = Xue-Ming Yang, Michael J. Le Bas
| journal = Lithos
| volume = 72
| issue = 1–2
| pages = 97–116
| year = 2004
| doi = 10.1016/j.lithos.2003.09.002 }}</ref><ref>{{cite journal
| title = Bayan Obo Controversy: Carbonatites versus Iron Oxide-Cu-Au-(REE-U)
| author = Chengyu Wu
| journal = Resource Geology
| volume = 58
| issue = 4
| pages = 348–354
| year = 2007
| url = http://www3.interscience.wiley.com/journal/121496988/abstract
| archive-url = https://archive.today/20121217213134/http://www3.interscience.wiley.com/journal/121496988/abstract
| url-status = dead
| archive-date = 2012-12-17
| doi = 10.1111/j.1751-3928.2008.00069.x }}</ref>

==常見稀土礦物==
以下所列的是比較常見的熱液稀土礦物,以及經常含有顯著稀土元素替代物的礦物:<ref>{{cite web
| url =https://www.chemistryworld.com/news/rare-element-substitution-a-tricky-proposition/6936.article
| title = Rare element substitution a tricky proposition
| publisher = CHEMISTRYWORLD
| date = 2014-1-6
| accessdate = 2022-1-7
}}</ref>
{{div col|colwidth=20em}}
*[[釔易解石]]或[[鈰易解石]]
*{{le|褐簾石|allanite}}
*[[磷灰石]]
*{{le|氟碳鈰礦|bastnäsite}}
*{{le|磷灰石|Britholite-(Ce) }}或釔矽磷灰石
*{{le|板鈦礦|brockite}}
*{{le|矽鈰石礦|cerite}}
*{{le|硫矽酸鹽綠簾石Dollaseite-(Ce)}}
*{{le|氟鈰石|fluocerite}}
*[[螢石]]
*[[硅鈹釔礦]]
*[[獨居石]]
*{{le|氟碳鈰鈣石|Parisite-(Ce)}}或氟碳鑭鈣石(Parisite-(La))
*{{le|菱硼硅鈰礦|Stillwellite-(Ce)}}
*{{le|直碳鈣鈰礦|Synchysite-(Ce)}}
*[[榍石]]
*{{le|氧釩釔礦|wakefieldite}}
*[[磷釔礦]]
*[[鋯石]]
{{div col end}}

==開採作業對環境的可能影響==
在自然環境中的稀土元素濃度非常低。蘊藏這類資源的礦山通常位於環境和社會標準非常低的國家,因為礦山的開發,而導致有侵犯人權、森林砍伐的情事,並且污染到當地的土地和水源。<ref name=rizk>{{Cite web|title=What colour is the cloud?|first1=Shirley |last1=Rizk |date=2019-06-21|url=https://www.eib.org/en/stories/digital-footprint|access-date=2020-09-17|website=European Investment Bank|language=en}}</ref><ref name=standaert>{{Cite web|title=China Wrestles with the Toxic Aftermath of Rare Earth Mining|url=https://e360.yale.edu/features/china-wrestles-with-the-toxic-aftermath-of-rare-earth-mining|first1=Michael|last1=Standaert|date=2019-07-02|access-date=2021-06-16|publisher=Yale School of the Environment|work=Yale Environment 360}}</ref>

在採礦和工業生產場所附近,稀土元素的濃度會上升到正常背景水準的許多倍。稀土元素一旦進入環境,就會滲入土壤中,然後它們的遷移取決於多種因素,例如侵蝕作用、風化作用、pH值、降水和地下水等。如同金屬一樣,它們可根據土壤條件形成,無論是移動,或是被吸附到土壤顆粒中。根據它們的生物利用度,稀土元素可被植物吸收,然後被人類和牲畜攝入。對於稀土元素的開採,使用( 肥料添加劑)和磷肥的生產,都會導致稀土元素污染 。<ref name="Volokh">{{Cite journal |date=1990-06-01 |title=Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment |journal=Science of the Total Environment |language=en |volume=95 |pages=141–148 |doi=10.1016/0048-9697(90)90059-4 |pmid=2169646 |issn=0048-9697|bibcode=1990ScTEn..95..141V |last1=Volokh |first1=A. A. |last2=Gorbunov |first2=A. V. |last3=Gundorina |first3=S. F. |last4=Revich |first4=B. A. |last5=Frontasyeva |first5=M. V. |author6=Chen Sen Pal }}</ref>此外,在萃取稀土元素的過程中會用到強酸,而這些酸會滲入環境,並通過水體而導致水生環境酸化。

對於稀土元素的開採、提煉和回收,如果管理不當,會對環境造成嚴重後果。稀土元素尾礦中的釷和鈾因有低放射性,而存有潛在危害,<ref>Bourzac, Katherine. [http://www.technologyreview.com/energy/26655/?p1=MstCom "Can the US Rare-Earth Industry Rebound?"] ''Technology Review''. 2010-10-29.</ref>這些物質如果處理不當,會對環境造成廣泛的傷害。

==參見==
*[[稀土元素]]
*[[中國稀土業]]
*[[稀土貿易糾紛]]
* [[矿物]]
* [[岩石]]/[[岩石列表]]
* [[地质学]]

==參考文獻==
* Jones, Adrian P., Francis Wall and C. Terry Williams, eds. (1996) ''Rare Earth Minerals: Chemistry, Origin and Ore Deposits'', The Mineralogy Society Series #7, 372 pp. {{ISBN|978-0-412-61030-1}}
{{reflist|2}}
*[https://web.archive.org/web/20150402100826/http://prysmag.com/News/New-Policy-Affect-RE-Price.html China New Policy Affect Rare Earth Price]

== 外部連結 ==
* {{Commons category-inline|Rare earth elements}}
{{external media
| width = 160px
| align = upright
| headerimage=
| audio1 = [https://www.sciencehistory.org/distillations/podcast/rare-earths-the-hidden-cost-to-their-magic "Rare Earths: The Hidden Cost to Their Magic"], Distillations Podcast and transcript, Episode 242, June 25, 2019, Science History Institute | video1 = [https://www.sciencehistory.org/rare-earth-elements-project “10 ways rare earth elements make life better”], animation, Science History Institute | video2 = [https://www.youtube.com/watch?v=aglMNj4hld0 Rare Earth Elements: The Intersection of Science and Society], presentation and discussion led by Ira Flatow, Science History Institute, 2019-9-24 }}

{{化學元素分類}}
{{chemistry-stub}}
{{chemistry-stub}}


{{Authority control}}
[[Category:稀土矿物]]
[[Category:贸易战]]
[[Category:金屬元素]]
[[Category:稀土金属]]
[[分類:稀土礦物]]

2022年6月20日 (一) 09:17的版本

稀土礦物 (以一枚直徑19毫米1美分硬幣來與礦石做對比)
位於中國包頭白雲鄂博礦區假色衛星相片,2006年

所稱的稀土礦物(英語:Rare earth mineral)中,通常會含有一種或是多種稀土元素的成分。稀土礦物通常與性至高鹼性英语Peralkaline rock火成岩複合物有關聯,與鹼性岩漿相關的偉晶岩、或是存在碳酸深成岩中,或是與之有關聯。[1]具有鈣鈦礦物相(mineral phase)的岩石是鹼性複合物中稀土元素的共同宿主。[2]來自地幔的碳酸鹽熔體也是稀土的載體。[3]與鹼性岩漿作用相關的熱液礦床含有多種稀土礦物。[1]

而稀土元素是一組共17種,具有光澤,但之間難以區別的銀白色軟性重金屬。[4][5] 雖然名為稀土元素,但實際上這些元素在地殼中的數量相對豐富,鈰是地球中排名第25最豐富的元素(參見地殼元素豐富度列表)佔68百萬分率,數量超過。由於稀土元素具有的地球化學特性,它們通常是呈分散狀態,而不常有高濃度的稀土礦物存在。因此世界上少有經濟上值得開採的礦場(因此而得「稀土」之名)。[6]

中國的儲藏量佔全世界的36.7%,[7]但中國的產量曾佔全世界的95%以上,[8]在2017年佔全世界的81%。到2021年中國的產量佔全世界的60.63%,而同年美國的產量排名第2,佔比為15.52%。[9]

中國的白雲鄂博礦區是世界已知最大的稀土礦物蘊藏區。[10]在2005年,這個礦區的稀土元素產量曾高達全世界的45%。[11][12][13]

常見稀土礦物

以下所列的是比較常見的熱液稀土礦物,以及經常含有顯著稀土元素替代物的礦物:[14]

開採作業對環境的可能影響

在自然環境中的稀土元素濃度非常低。蘊藏這類資源的礦山通常位於環境和社會標準非常低的國家,因為礦山的開發,而導致有侵犯人權、森林砍伐的情事,並且污染到當地的土地和水源。[15][16]

在採礦和工業生產場所附近,稀土元素的濃度會上升到正常背景水準的許多倍。稀土元素一旦進入環境,就會滲入土壤中,然後它們的遷移取決於多種因素,例如侵蝕作用、風化作用、pH值、降水和地下水等。如同金屬一樣,它們可根據土壤條件形成,無論是移動,或是被吸附到土壤顆粒中。根據它們的生物利用度,稀土元素可被植物吸收,然後被人類和牲畜攝入。對於稀土元素的開採,使用( 肥料添加劑)和磷肥的生產,都會導致稀土元素污染 。[17]此外,在萃取稀土元素的過程中會用到強酸,而這些酸會滲入環境,並通過水體而導致水生環境酸化。

對於稀土元素的開採、提煉和回收,如果管理不當,會對環境造成嚴重後果。稀土元素尾礦中的釷和鈾因有低放射性,而存有潛在危害,[18]這些物質如果處理不當,會對環境造成廣泛的傷害。

參見

參考文獻

  • Jones, Adrian P., Francis Wall and C. Terry Williams, eds. (1996) Rare Earth Minerals: Chemistry, Origin and Ore Deposits, The Mineralogy Society Series #7, 372 pp. ISBN 978-0-412-61030-1
  1. ^ 1.0 1.1 Dostal, Jaroslav. Rare Metal Deposits Associated with Alkaline/Peralkaline Igneous Rocks. ResearchGate. April 2016. doi:10.5382/Rev.18.02. 
  2. ^ Campbell, Linda S; Henderson, Paul. Rare Earth Chemistry of Perovskite Group Minerals from the Gardiner Complex, East Greenland. Mineralogical Magazine. April 1997, 61 (405): 1970212. doi:10.1180/minmag.1997.061.405.04. 
  3. ^ Yaxley, Gregory M.; Sujoy Ghosh, Sujoy. Deep Carbon. 6 - CO2-Rich Melts in Earth: Cambridge University Press. : 129 - 162. They are also of particular economic importance as hosts or sources of many critical metals, including the rare earth elements (REEs) Nb, Ta, P, and others. 
  4. ^ Professor of Chemistry at University College London, Andrea Sella, YouTube上的Andrea Sella: "Insight: Rare-earth metals", Interview on TRT World / Oct 2016, minutes 4:40 - ff.
  5. ^ T Gray. Lanthanum and Cerium. The Elements. Black Dog & Leventhal. 2007: 118–122. 
  6. ^ Haxel G.; Hedrick J.; Orris J. Rare Earth Elements—Critical Resources for High Technology (PDF). Edited by Peter H. Stauffer and James W. Hendley II; Graphic design by Gordon B. Haxel, Sara Boore, and Susan Mayfield. United States Geological Survey. 2002 [2012-03-13]. USGS Fact Sheet: 087‐02. However, in contrast to ordinary base and precious metals, REE have very little tendency to become concentrated in exploitable ore deposits. Consequently, most of the world's supply of REE comes from only a handful of sources. 
  7. ^ Suzanne Goldenberg. Rare earth metals mine is key to US control over hi-tech future: Approval secured to restart operations, which could be crucial in challenging China's stranglehold on the market. The Guardian (London). 26 December 2010. 
  8. ^ Tse, Pui-Kwan. USGS Report Series 2011–1042: China's Rare-Earth Industry. pubs.usgs.gov. [2018-04-04]. 
  9. ^ Distribution of rare earths production worldwide as of 2021, by country. statista. 2022-03-04 [2022-06-12]. 
  10. ^ Rare Earths: The Hidden Cost to Their Magic" (Part 2), Distillations Podcast and transcript, Episode 242. Science History Institute. June 25, 2019 [2019-8-28]. 
  11. ^ Lawrence J. Drewa, Meng Qingrunb and Sun Weijun. The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos. 1990, 26 (1–2): 43–65. doi:10.1016/0024-4937(90)90040-8. 
  12. ^ Xue-Ming Yang, Michael J. Le Bas. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis. Lithos. 2004, 72 (1–2): 97–116. doi:10.1016/j.lithos.2003.09.002. 
  13. ^ Chengyu Wu. Bayan Obo Controversy: Carbonatites versus Iron Oxide-Cu-Au-(REE-U). Resource Geology. 2007, 58 (4): 348–354. doi:10.1111/j.1751-3928.2008.00069.x. (原始内容存档于2012-12-17). 
  14. ^ Rare element substitution a tricky proposition. CHEMISTRYWORLD. 2014-1-6 [2022-1-7]. 
  15. ^ Rizk, Shirley. What colour is the cloud?. European Investment Bank. 2019-06-21 [2020-09-17] (英语). 
  16. ^ Standaert, Michael. China Wrestles with the Toxic Aftermath of Rare Earth Mining. Yale Environment 360. Yale School of the Environment. 2019-07-02 [2021-06-16]. 
  17. ^ Volokh, A. A.; Gorbunov, A. V.; Gundorina, S. F.; Revich, B. A.; Frontasyeva, M. V.; Chen Sen Pal. Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment. Science of the Total Environment. 1990-06-01, 95: 141–148. Bibcode:1990ScTEn..95..141V. ISSN 0048-9697. PMID 2169646. doi:10.1016/0048-9697(90)90059-4 (英语). 
  18. ^ Bourzac, Katherine. "Can the US Rare-Earth Industry Rebound?" Technology Review. 2010-10-29.

外部連結

外部媒体链接
音频
audio icon "Rare Earths: The Hidden Cost to Their Magic", Distillations Podcast and transcript, Episode 242, June 25, 2019, Science History Institute
视频
video icon “10 ways rare earth elements make life better”, animation, Science History Institute
video icon Rare Earth Elements: The Intersection of Science and Society, presentation and discussion led by Ira Flatow, Science History Institute, 2019-9-24