艾里函数

维基百科,自由的百科全书
跳转至: 导航搜索

艾里函数(Ai(x)),英国英格蘭天文学家數學家喬治·比德爾·艾里命名的特殊函数,他在1838年研究光学的时候遇到了这个函数。Ai(x)的记法是Harold Jeffreys引进的。Ai(x)与相关函数Bi(x)(也称为艾里函数),是以下微分方程的解:

y'' - xy = 0 , \,\!

这个方程称为艾里方程斯托克斯方程。这是最简单的二阶线性微分方程,它有一个转折点,在这一点函数由周期性的振动转变为指数增长(或衰减)。

定义[编辑]

Ai(x)(红色)和Bi(x)(蓝色)的图像

对于实数x,艾里函数由以下的积分定义:

\mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + xt\right)\, dt.

虽然这个函数不是绝对可积的(当t趋于+∞时积分表达式不趋于零),这个广义积分还是收敛的,因为它快速振动的正数和负数部分倾向于互相抵消(这可以用分部积分法来检验)。

把: y= Ai(x) 求导,我们可以发现它满足以下的微分方程:

y'' - xy = 0 . \,\!

这个方程有两个线性独立的解。除了:Ai(x)以外,另外一个解称为第二艾里函数,记为Bi(x)。它定义为当x趋于−∞时,振幅与Ai(x) 相等,但相位与Ai(x)相差 \frac{\pi}{2} 的函数:

\mathrm{Bi}(x) = \frac{1}{\pi} \int_0^\infty \ e^{\left(-\frac{t^3}{3} + xt\right)} + \sin\left(\frac{t^3}{3} + xt\right)\,dt.

性质[编辑]

 x = 0 时,:Ai(x) 和:Bi(x) 以及它们的导数的值为:
\begin{align}
 \mathrm{Ai}(0) &{}= \frac{1}{\sqrt[3]{9} \Gamma(\frac23)}, & \quad \mathrm{Ai}'(0) &{}= -\frac{1}{\sqrt[3]{3} \Gamma(\frac13)}, \\
 \mathrm{Bi}(0) &{}= \frac{1}{\sqrt[6]{3}\Gamma(\frac23)}, & \quad \mathrm{Bi}'(0) &{}= \frac{\sqrt[6]{3}}{\Gamma(\frac13)}.
\end{align}

在这里,: {\Gamma} 表示伽玛函数。可以推出Ai(x)和Bi(x)的朗斯基行列式 \frac{1}{\pi}

x是正数时,Ai(x)是正的凸函数,指数衰减为零,Bi(x)也是正的凸函数,但呈指数增长。当x是负数时,Ai(x)和Bi(x)在零附近振动,其频率逐渐上升,振幅逐渐下降。这可以由以下艾里函数的渐近公式推出。

渐近公式[编辑]

x趋于+∞时,艾里函数的渐近表现为:

\begin{align}
 \mathrm{Ai}(x) &{}\sim \frac{e^{-\frac23x^{3/2}}}{2\sqrt\pi\,x^{1/4}} \\
 \mathrm{Bi}(x) &{}\sim \frac{e^{\frac23x^{3/2}}}{\sqrt\pi\,x^{1/4}}.
\end{align}

而对于负数方向的极限,则有:

\begin{align}
 \mathrm{Ai}(-x) &{}\sim \frac{\sin(\frac23x^{3/2}+\frac14\pi)}{\sqrt\pi\,x^{1/4}} \\
 \mathrm{Bi}(-x) &{}\sim \frac{\cos(\frac23x^{3/2}+\frac14\pi)}{\sqrt\pi\,x^{1/4}}. 
\end{align}

这些极限的渐近展开式也是可以得到的[1]

自变量是复数时的情形[编辑]

我们可以把艾里函数的定义扩展到整个复平面:

\mathrm{Ai}(z) = \frac{1}{2\pi i} \int_{C} \exp\left(\frac{t^3}{3} - zt\right)\, dt,

其中积分路径C从辐角为-(1/3)π的无穷远处的点开始,在辐角为(1/3)π的无穷远处的点结束。此外,我们也可以用微分方程y'' - xy = 0来把Ai(x)和Bi(x)延拓为复平面上的整函数

以上Ai(x)的渐近公式在复平面上也是正确的,如果取主值为x2/3,且x不在负的实数轴上。Bi(x)的公式也是正确的,只要x位于扇形{xC : |arg x| < (1/3)π−δ}内,对于某个正数δ。最后,Ai(−x)和Bi(−x)是正确的,如果x位于扇形{xC : |arg x| < (2/3)π−δ}内。

从艾里函数的渐近表现可以推出,Ai(x)和Bi(x)在负的实数轴上都有无穷多个零点。Ai(x)在复平面内没有其它零点,而Bi(x)在扇形{zC : (1/3)π < |arg z| < (1/2)π}内还有无穷多个零点。

图像[编辑]

\Re \left[ \mathrm{Ai} ( x + iy) \right] \Im \left[ \mathrm{Ai} ( x + iy) \right] | \mathrm{Ai} ( x + iy) | \, \mathrm{arg} \left[ \mathrm{Ai} ( x + iy) \right] \,
AiryAi Real Surface.png AiryAi Imag Surface.png AiryAi Abs Surface.png AiryAi Arg Surface.png
AiryAi Real Contour.svg AiryAi Imag Contour.svg AiryAi Abs Contour.svg AiryAi Arg Contour.svg


\Re \left[ \mathrm{Bi} ( x + iy) \right] \Im \left[ \mathrm{Bi} ( x + iy) \right] | \mathrm{Bi} ( x + iy) | \, \mathrm{arg} \left[ \mathrm{Bi} ( x + iy) \right] \,
AiryBi Real Surface.png AiryBi Imag Surface.png AiryBi Abs Surface.png AiryBi Arg Surface.png
AiryBi Real Contour.svg AiryBi Imag Contour.svg AiryBi Abs Contour.svg AiryBi Arg Contour.svg

与其它特殊函数的关系[编辑]

当自变量是正数时,艾里函数与变形贝塞尔函数之间有以下的关系:

\begin{align}
 \mathrm{Ai}(x) &{}= \frac1\pi \sqrt{\frac13 x} \, K_{1/3}\left(\frac23 x^{3/2}\right), \\
 \mathrm{Bi}(x) &{}= \sqrt{\frac13 x} \left(I_{1/3}\left(\frac23 x^{3/2}\right) + I_{-1/3}\left(\frac23 x^{3/2}\right)\right).
\end{align}

在这里,I±1/3K1/3是方程x^2y'' + xy' - (x^2 + 1/9)y = 0的解。

当自变量是负数时,艾里函数与贝塞尔函数之间有以下的关系:

\begin{align}
 \mathrm{Ai}(-x) &{}= \frac13 \sqrt{x} \left(J_{1/3}\left(\frac23 x^{3/2}\right) + J_{-1/3}\left(\frac23 x^{3/2}\right)\right), \\
 \mathrm{Bi}(-x) &{}= \sqrt{\frac13 x} \left(J_{-1/3}\left(\frac23 x^{3/2}\right) - J_{1/3}\left(\frac23 x^{3/2}\right)\right). \end{align}

在这里,J±1/3是方程x^2y'' + xy' + (x^2 - 1/9)y = 0的解。

Scorer函数y'' - xy = 1/\pi的解,它也可以用艾里函数来表示:

\begin{align}
 \mathrm{Gi}(x) &{}= \mathrm{Bi}(x) \int_x^\infty \mathrm{Ai}(t) \, dt + \mathrm{Ai}(x) \int_0^x \mathrm{Bi}(t) \, dt, \\
 \mathrm{Hi}(x) &{}= \mathrm{Bi}(x) \int_{-\infty}^x \mathrm{Ai}(t) \, dt - \mathrm{Ai}(x) \int_{-\infty}^x \mathrm{Bi}(t) \, dt. \end{align}

参考文献[编辑]

  1. ^ 参看Abramowitz and Stegun, 1954 和 Olver, 1974。
  • Milton Abramowitz and Irene A. Stegun (1954). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (See §10.4). National Bureau of Standards.
  • Airy (1838). On the intensity of light in the neighbourhood of a caustic. Transactions of the Cambridge Philosophical Society, 6, 379–402.
  • Olver (1974). Asymptotics and Special Functions, Chapter 11. Academic Press, New York.
  • Harold Richard Suiter. Star Testing Astronomical Telescopes: A Manual for Optical Evaluation and Adjustment. Richmond, VA: Willmann-Bell. 1994. ISBN 978-0-943396-44-6. 含有许多图像

外部链接[编辑]