跳转到内容

铌酸锂:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
建立内容为“{{chembox | verifiedrevid = 476994790 | ImageFile = Linbo3 Unit Cell.png | ImageSize = 150px | ImageFile2 = | IUPACName = | OtherNames = | Sectio...”的新页面
标签添加文件 image 圖像檢查
(没有差异)

2014年8月18日 (一) 14:20的版本

铌酸锂
识别
CAS号 12031-63-9  checkY
PubChem 159404
ChemSpider 10605804
SMILES
 
  • [Li+].[O-][Nb](=O)=O
InChI
 
  • 1/Li.Nb.3O/q+1;;;;-1/rLi.NbO3/c;2-1(3)4/q+1;-1
InChIKey GQYHUHYESMUTHG-YHKBGIKBAK
性质
化学式 LiNbO3
摩尔质量 147.846 g/mol g·mol⁻¹
外观 无色固体
密度 4.65 g/cm3 [1]
熔点 1257 °C[1]
溶解性
能隙 4 eV eV
折光度n
D
no 2.30, ne 2.21[2]
结构
晶体结构 三方晶系
空间群 R3c
危险性
欧盟编号 未列出
致死量或浓度:
LD50中位剂量
8000 mg/kg (大鼠经口)[3]
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

铌酸锂Template:锂Template:铌Template:氧3)是一种的化合物。其单晶是光波导,移动电话,压电传感器,光学调制器和各种其它线性和非线性光学应用的重要材料。

已隱藏部分未翻譯内容,歡迎參與翻譯

性质

Lithium niobate is a colorless solid insoluble in water. It has a trigonal crystal system, which lacks inversion symmetry and displays ferroelectricity, Pockels effect, piezoelectric effect, photoelasticity and nonlinear optical polarizability. Lithium niobate has negative uniaxial birefringence which depends slightly on the stoichiometry of the crystal and on temperature. It is transparent for wavelengths between 350 and 5200 nanometers.

Lithium niobate can be doped by magnesium oxide, which increases its resistance to optical damage (also known as photorefractive damage) when doped above the optical damage threshold. Other available dopants are Template:Iron, Template:Zinc, Template:Hafnium, Template:Copper, Template:Gadolinium, Template:Erbium, Template:Yttrium, Template:Manganese and Template:Boron.

生长

Single crystals of lithium niobate can be grown using the Czochralski process.[4]
A Z-cut, single crystal Lithium Niobate wafer
After a crystal is grown, it is sliced into wafers of different orientation. Common orientations are Z-cut, X-cut, Y-cut, and cuts with rotated angles of the previous axes.[5]

纳米粒子

Nanoparticles of lithium niobate and niobium pentoxide can be produced at low temperature.[6] The complete protocol implies a LiH induced reduction of NbCl5 followed by in situ spontaneous oxidation into low-valence niobium nano-oxides. These niobium oxides are exposed to air atmosphere resulting in pure Nb2O5. Finally, the stable Nb2O5 is converted into lithium niobate LiNbO3 nanoparticles during the controlled hydrolysis of the LiH excess.[7] Spherical nanoparticles of lithium niobate with a diameter of approximately 10 nm can be prepared by impregnating a mesoporous silica matrix with a mixture of an aqueous solution of LiNO3 and NH4NbO(C2O4)2 followed by 10 min heating in an IR furnace.[8]

应用

Lithium niobate is used extensively in the telecoms market, e.g. in mobile telephones and optical modulators. It is the material of choice for the manufacture of surface acoustic wave devices. For some uses it can be replaced by lithium tantalate, Template:LithiumTemplate:TantalumTemplate:Oxygen. Other uses are in laser frequency doubling, nonlinear optics, Pockels cells, optical parametric oscillators, Q-switching devices for lasers, other acousto-optic devices, optical switches for gigahertz frequencies, etc. It is an excellent material for manufacture of optical waveguides.

It's also used in the making of optical spatial low-pass (anti-aliasing) filters.

周期性极化铌酸锂(PPLN)

Periodically poled lithium niobate (PPLN) is a domain-engineered lithium niobate crystal, used mainly for achieving quasi-phase-matching in nonlinear optics. The ferroelectric domains point alternatively to the +c and the -c direction, with a period of typically between 5 and 35 µm. The shorter periods of this range are used for second harmonic generation, while the longer ones for optical parametric oscillation. Periodic poling can be achieved by electrical poling with periodically structured electrode. Controlled heating of the crystal can be used to fine-tune phase matching in the medium due to a slight variation of the dispersion with temperature.

Periodic poling uses the largest value of lithium niobate's nonlinear tensor, d33= 27 pm/V. Quasi-phase matching gives maximum efficiencies that are 2/π (64%) of the full d33, about 17 pm/V

Other materials used for periodic poling are wide band gap inorganic crystals like KTP (resulting in periodically poled KTP, PPKTP), lithium tantalate, and some organic materials.

The periodic poling technique can also be used to form surface nanostructures.[9][10]

However, due to its low photorefractive damage threshold, PPLN only finds limited applications: at very low power levels. MgO doped lithium niobate is fabricated by periodically poled method. Periodically poled MgO doped lithium niobate (PPMgOLN) therefore expands the application to medium power level.

塞耳迈耶尔方程

The Sellmeier equations for the extraordinary index are used to find the poling period and approximate temperature for quasi-phase matching. Jundt[11] gives

valid from 20 to 250 °C for wavelengths from 0.4 to 5 micrometers, whereas for longer wavelength,[12]

which is valid for T = 25 to 180 °C, for wavelengths λ between 2.8 and 4.8 micrometers.

In these equations f = (T-24.5)(T+570.82), λ is in micrometers, and T is in °C.

More generally for ordinary and extraordinary index for MgO doped LiNbO3:

,

with:

Parameters 5% MgO doped CLN 1% MgO doped SLN
ne no ne
a1 5.756 5.653 5.078
a2 0.0983 0.1185 0.0964
a3 0.2020 0.2091 0.2065
a4 189.32 89.61 61.16
a5 12.52 10.85 10.55
a6 1.32×10-2 1.97×10-2 1.59×10-2
b1 2.860×10-6 7.941×10-7 4.677×10-7
b2 4.700×10-8 3.134×10-8 7.822×10-8
b3 6.113×10-8 -4.641×10-9 -2.653×10-8
b4 1.516×10-4 -2.188×10-6 1.096×10-4

for congruent LiNbO3 (CLN) and stochiometric LiNbO3 (SLN).[13]

参见

参考资料

  1. ^ 1.0 1.1 Spec sheet of Crystal Technology, Inc.
  2. ^ Luxpop. [June 18, 2010].  (Value at nD=589.2 nm, 25 °C.)
  3. ^ http://chem.sis.nlm.nih.gov/chemidplus/rn/12031-63-9
  4. ^ Volk, Tatyana; Wohlecke, Manfred. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Springer. 2008: 1–9. ISBN 978-3-540-70765-3. doi:10.1007/978-3-540-70766-0. 
  5. ^ Wong, K. K. Properties of Lithium Niobate. London, United Kingdom: INSPEC. 2002: 8. ISBN 0 85296 799 3. 
  6. ^ Grange, R.; Choi, J.W.; Hsieh, C.L.; Pu, Y.; Magrez, A.; Smajda, R.; Forro, L.; Psaltis, D. Lithium niobate nanowires: synthesis, optical properties and manipulation. Applied Physics Letters. 2009, 95: 143105. doi:10.1063/1.3236777. 
  7. ^ Aufray M, Menuel S, Fort Y, Eschbach J, Rouxel D, Vincent B. New Synthesis of Nanosized Niobium Oxides and Lithium Niobate Particles and Their Characterization by XPS Analysis. Journal of Nanoscience and Nanotechnology. 2009, 9 (8): 4780–4789. doi:10.1166/jnn.2009.1087. 
  8. ^ Grigas, A; Kaskel, S. Synthesis of LiNbO3 nanoparticles in a mesoporous matrix. Beilstein Journal of Nanotechnology. 2011, 2: 28–33. doi:10.3762/bjnano.2.3. 
  9. ^ S. Grilli; P. Ferraro; P. De Natale; B. Tiribilli; M. Vassalli. Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching. Applied Physics Letters. 2005, 87 (23): 233106. doi:10.1063/1.2137877. 
  10. ^ P. Ferraro; S. Grilli. Modulating the thickness of the resist pattern for controlling size and depth of submicron reversed domains in lithium niobate. Applied Physics Letters. 2006, 89 (13): 133111. doi:10.1063/1.2357928. 
  11. ^ Dieter H. Jundt. Temperature-dependent Sellmeier equation for the index of refraction in congruent lithium niobate. Optics Letters. 1997, 22 (20): 1553–5. PMID 18188296. doi:10.1364/OL.22.001553. 
  12. ^ LH Deng; et al. Improvement to Sellmeier equation for periodically poled LiNbO crystal using mid-infrared difference-frequency generation. Optics Communications. 2006, 268 (1): 110. doi:10.1016/j.optcom.2006.06.082. 
  13. ^ O.Gayer; et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B 91. 2008: 343–348. doi:10.1007/s00340-008-2998-2. 

扩展阅读

外部链接