# 傑斐緬柯方程式

## 在真空內的電磁場

${\displaystyle \mathbf {E} (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}\left[\rho (\mathbf {r} ',\,t_{r}){\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{3}}}+{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}{\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{2}}}-{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{c^{2}|\mathbf {r} -\mathbf {r} '|}}\right]d^{3}\mathbf {r} '}$
${\displaystyle \mathbf {B} (\mathbf {r} ,t)={\frac {\mu _{0}}{4\pi }}\int _{{\mathcal {V}}'}\left[{\frac {\mathbf {J} (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|^{3}}}+{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{c|\mathbf {r} -\mathbf {r} '|^{2}}}\right]\times (\mathbf {r} -\mathbf {r} ')\ d^{3}\mathbf {r} '}$ ;

### 推導

${\displaystyle \Phi (\mathbf {r} ,\,t)\ {\stackrel {def}{=}}\ {\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}{\frac {\rho (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$
${\displaystyle \mathbf {A} (\mathbf {r} ,\,t)\ {\stackrel {def}{=}}\ {\frac {\mu _{0}}{4\pi }}\int _{{\mathcal {V}}'}{\frac {\mathbf {J} (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$

${\displaystyle t_{r}\ {\stackrel {def}{=}}\ t-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}}$

${\displaystyle \mathbf {E} =-\nabla \Phi -{\frac {\partial \mathbf {A} }{\partial t}}}$
${\displaystyle \mathbf {B} =\nabla \times \mathbf {A} }$

${\displaystyle {\boldsymbol {\mathfrak {R}}}=\mathbf {r} -\mathbf {r} '}$

${\displaystyle \nabla \Phi (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}\nabla \left({\frac {\rho (\mathbf {r} ',\,t_{r})}{\mathfrak {R}}}\right)\,d^{3}\mathbf {r} '={\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}\left[{\frac {\nabla \rho (\mathbf {r} ',\,t_{r})}{\mathfrak {R}}}+\rho (\mathbf {r} ',\,t_{r})\nabla \left({\frac {1}{\mathfrak {R}}}\right)\right]\,d^{3}\mathbf {r} '}$

{\displaystyle {\begin{aligned}d\rho (\mathbf {r} ',\,t_{r})&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}dt_{r}\\&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}\left({\frac {\partial t_{r}}{\partial t}}dt+{\frac {\partial t_{r}}{\partial {\mathfrak {R}}}}d{\mathfrak {R}}\right)\\&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}\left(dt-{\frac {1}{c}}d{\mathfrak {R}}\right)\\&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}\left[dt-{\frac {1}{c}}(\nabla {\mathfrak {R}}\cdot d\mathbf {r} +\nabla '{\mathfrak {R}}\cdot d\mathbf {r} ')\right]\\\end{aligned}}}

${\displaystyle {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t}}={\frac {\partial t_{r}}{\partial t}}\ {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t_{r}}}={\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t_{r}}}}$
${\displaystyle \nabla {\mathfrak {R}}={\hat {\boldsymbol {\mathfrak {R}}}}}$

${\displaystyle \nabla \rho (\mathbf {r} ',\,t_{r})=-{\frac {1}{c}}\ {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t_{r}}}\nabla {\mathfrak {R}}=-{\frac {1}{c}}\ {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t}}{\hat {\boldsymbol {\mathfrak {R}}}}=-{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}{\hat {\boldsymbol {\mathfrak {R}}}}}$

${\displaystyle \nabla \Phi (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}\left[-{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}{\frac {\hat {\boldsymbol {\mathfrak {R}}}}{\mathfrak {R}}}-\rho (\mathbf {r} ',\,t_{r})\left({\frac {\hat {\boldsymbol {\mathfrak {R}}}}{{\mathfrak {R}}^{2}}}\right)\right]\,d^{3}\mathbf {r} '}$

${\displaystyle {\frac {\partial \mathbf {A} (\mathbf {r} ,\,t)}{\partial t}}={\frac {\mu _{0}}{4\pi }}\int _{{\mathcal {V}}'}{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '={\frac {1}{4\pi \epsilon _{0}c^{2}}}\int _{{\mathcal {V}}'}{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}$

## 參考文獻

1. ^ McDonald, Kirk T., The relation between expressions for time-dependent electromagnetic fields given by Jefimenko and by Panofsky and Phillips, American Journal of Physics, 1997, 65 (11): pp. 1074–1076 Authors list列表缺少|last1= (帮助)
2. ^ Jefimenko, Oleg D., Electricity and magnetism: an introduction to the theory of electric and magnetic fields 2nd, Electret Scientific Co., 1989, ISBN 9780917406089
3. ^ Griffiths, David J. Introduction to Electrodynamics (3rd ed.). Prentice Hall. 1998. ISBN 0-13-805326-X.
4. ^ Oleg D. Jefimenko, Solutions of Maxwell's equations for electric and magnetic fields in arbitrary media, American Journal of Physics 60(10)(1992), 899-902.
5. ^ Jefimenko, Oleg D., Causality Electromagnetic Induction and Gravitation 2nd, Electret Scientific: pp. 16, 2000, ISBN 0-917406-23-0