本条目中,向量 与标量 分别用粗体 与斜体 显示。例如,位置向量通常用
r
{\displaystyle \mathbf {r} \,\!}
表示;而其大小则用
r
{\displaystyle r\,\!}
来表示。 检验变数或场变数 的标记的后面没有单撇号“
′
{\displaystyle '\,\!}
”;源变数的标记的后面有单撇号“
′
{\displaystyle '\,\!}
”。
在电磁学 里,给予含时电荷密度 分布和电流密度 分布,可以使用杰斐缅柯方程式 (Jefimenko equation)来计算电场 和磁场 。这方程式因其发现者物理学家欧雷格·杰斐缅柯 而命名[ 1] 。杰斐缅柯方程式是马克士威方程组 对于这些电荷密度分布和电流密度分布的解答[ 2] [ 3] 。
给予在源位置
r
′
{\displaystyle \mathbf {r} '}
的电流或电荷分布,计算在场位置
r
{\displaystyle \mathbf {r} }
产生的电势或磁向量势。
在真空 内,电场
E
{\displaystyle \mathbf {E} }
和磁场
B
{\displaystyle \mathbf {B} }
可以用杰斐缅柯方程式表达为:
E
(
r
,
t
)
=
1
4
π
ϵ
0
∫
V
′
[
ρ
(
r
′
,
t
r
)
r
−
r
′
|
r
−
r
′
|
3
+
ρ
˙
(
r
′
,
t
r
)
c
r
−
r
′
|
r
−
r
′
|
2
−
J
˙
(
r
′
,
t
r
)
c
2
|
r
−
r
′
|
]
d
3
r
′
{\displaystyle \mathbf {E} (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}\left[\rho (\mathbf {r} ',\,t_{r}){\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{3}}}+{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}{\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{2}}}-{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{c^{2}|\mathbf {r} -\mathbf {r} '|}}\right]d^{3}\mathbf {r} '}
、
B
(
r
,
t
)
=
μ
0
4
π
∫
V
′
[
J
(
r
′
,
t
r
)
|
r
−
r
′
|
3
+
J
˙
(
r
′
,
t
r
)
c
|
r
−
r
′
|
2
]
×
(
r
−
r
′
)
d
3
r
′
{\displaystyle \mathbf {B} (\mathbf {r} ,t)={\frac {\mu _{0}}{4\pi }}\int _{{\mathcal {V}}'}\left[{\frac {\mathbf {J} (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|^{3}}}+{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{c|\mathbf {r} -\mathbf {r} '|^{2}}}\right]\times (\mathbf {r} -\mathbf {r} ')\ d^{3}\mathbf {r} '}
;
其中,
r
{\displaystyle \mathbf {r} }
是场位置,
r
′
{\displaystyle \mathbf {r} '}
是源位置,
t
{\displaystyle t}
是现在时间 ,
t
r
{\displaystyle t_{r}}
是推迟时间 ,
ϵ
0
{\displaystyle \epsilon _{0}}
是电常数 ,
μ
0
{\displaystyle \mu _{0}}
是磁常数 ,
ρ
{\displaystyle \rho }
是电荷密度 ,
ρ
˙
=
d
e
f
∂
ρ
∂
t
{\displaystyle {\dot {\rho }}\ {\stackrel {def}{=}}\ {\frac {\partial \rho }{\partial t}}}
定义为电荷密度对于时间的偏导数 ,
J
{\displaystyle \mathbf {J} }
是电流密度 ,
J
˙
=
d
e
f
∂
J
∂
t
{\displaystyle {\dot {\mathbf {J} }}\ {\stackrel {def}{=}}\ {\frac {\partial \mathbf {J} }{\partial t}}}
定义为电流密度对于时间的偏导数 ,
V
′
{\displaystyle {\mathcal {V}}'}
是体积分的空间,
d
3
r
′
{\displaystyle d^{3}\mathbf {r} '}
是微小体元素。
给予电荷密度分布
ρ
(
r
′
,
t
)
{\displaystyle \rho (\mathbf {r} ',\,t)}
和电流密度分布
J
(
r
′
,
t
)
{\displaystyle \mathbf {J} (\mathbf {r} ',\,t)}
,推迟纯量势
Φ
(
r
,
t
)
{\displaystyle \Phi (\mathbf {r} ,\,t)}
和推迟向量势
A
(
r
,
t
)
{\displaystyle \mathbf {A} (\mathbf {r} ,\,t)}
分别用方程式定义为(参阅推迟势 )
Φ
(
r
,
t
)
=
d
e
f
1
4
π
ϵ
0
∫
V
′
ρ
(
r
′
,
t
r
)
|
r
−
r
′
|
d
3
r
′
{\displaystyle \Phi (\mathbf {r} ,\,t)\ {\stackrel {def}{=}}\ {\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}{\frac {\rho (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}
、
A
(
r
,
t
)
=
d
e
f
μ
0
4
π
∫
V
′
J
(
r
′
,
t
r
)
|
r
−
r
′
|
d
3
r
′
{\displaystyle \mathbf {A} (\mathbf {r} ,\,t)\ {\stackrel {def}{=}}\ {\frac {\mu _{0}}{4\pi }}\int _{{\mathcal {V}}'}{\frac {\mathbf {J} (\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}
。
推迟时间
t
r
{\displaystyle t_{r}}
定义为现在时间
t
{\displaystyle t}
减去光波 传播的时间:
t
r
=
d
e
f
t
−
|
r
−
r
′
|
c
{\displaystyle t_{r}\ {\stackrel {def}{=}}\ t-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}}
;
其中,
c
{\displaystyle c}
是光速 。
在这两个非静态的推迟势方程式内,源电荷密度和源电流密度都跟推迟时间
t
r
{\displaystyle t_{r}}
有关,而不是跟时间无关。
推迟势与电场
E
{\displaystyle \mathbf {E} }
、磁场
B
{\displaystyle \mathbf {B} }
的关系分别为
E
=
−
∇
Φ
−
∂
A
∂
t
{\displaystyle \mathbf {E} =-\nabla \Phi -{\frac {\partial \mathbf {A} }{\partial t}}}
、
B
=
∇
×
A
{\displaystyle \mathbf {B} =\nabla \times \mathbf {A} }
。
设定
R
{\displaystyle {\boldsymbol {\mathfrak {R}}}}
为从源位置到场位置的分离向量:
R
=
r
−
r
′
{\displaystyle {\boldsymbol {\mathfrak {R}}}=\mathbf {r} -\mathbf {r} '}
。
场位置
r
{\displaystyle \mathbf {r} }
、源位置
r
′
{\displaystyle \mathbf {r} '}
和时间
t
{\displaystyle t}
都是自变数 。分离向量
R
{\displaystyle {\boldsymbol {\mathfrak {R}}}}
和其大小
R
{\displaystyle {\mathfrak {R}}}
都是应变数 ,跟场位置
r
{\displaystyle \mathbf {r} }
、源位置
r
′
{\displaystyle \mathbf {r} '}
有关。推迟时间
t
r
=
t
−
R
/
c
{\displaystyle t_{r}=t-{\mathfrak {R}}/c}
也是应变数,跟时间
t
{\displaystyle t}
、分离距离
R
{\displaystyle {\mathfrak {R}}}
有关。
推迟纯量势
Φ
(
r
,
t
)
{\displaystyle \Phi (\mathbf {r} ,\,t)}
的梯度 是
∇
Φ
(
r
,
t
)
=
1
4
π
ϵ
0
∫
V
′
∇
(
ρ
(
r
′
,
t
r
)
R
)
d
3
r
′
=
1
4
π
ϵ
0
∫
V
′
[
∇
ρ
(
r
′
,
t
r
)
R
+
ρ
(
r
′
,
t
r
)
∇
(
1
R
)
]
d
3
r
′
{\displaystyle \nabla \Phi (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}\nabla \left({\frac {\rho (\mathbf {r} ',\,t_{r})}{\mathfrak {R}}}\right)\,d^{3}\mathbf {r} '={\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}\left[{\frac {\nabla \rho (\mathbf {r} ',\,t_{r})}{\mathfrak {R}}}+\rho (\mathbf {r} ',\,t_{r})\nabla \left({\frac {1}{\mathfrak {R}}}\right)\right]\,d^{3}\mathbf {r} '}
。
源电荷密度
ρ
(
r
′
,
t
r
)
{\displaystyle \rho (\mathbf {r} ',\,t_{r})}
的全微分 是
d
ρ
(
r
′
,
t
r
)
=
∇
′
ρ
⋅
d
r
′
+
∂
ρ
∂
t
r
d
t
r
=
∇
′
ρ
⋅
d
r
′
+
∂
ρ
∂
t
r
(
∂
t
r
∂
t
d
t
+
∂
t
r
∂
R
d
R
)
=
∇
′
ρ
⋅
d
r
′
+
∂
ρ
∂
t
r
(
d
t
−
1
c
d
R
)
=
∇
′
ρ
⋅
d
r
′
+
∂
ρ
∂
t
r
[
d
t
−
1
c
(
∇
R
⋅
d
r
+
∇
′
R
⋅
d
r
′
)
]
{\displaystyle {\begin{aligned}d\rho (\mathbf {r} ',\,t_{r})&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}dt_{r}\\&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}\left({\frac {\partial t_{r}}{\partial t}}dt+{\frac {\partial t_{r}}{\partial {\mathfrak {R}}}}d{\mathfrak {R}}\right)\\&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}\left(dt-{\frac {1}{c}}d{\mathfrak {R}}\right)\\&=\nabla '\rho \cdot d\mathbf {r} '+{\frac {\partial \rho }{\partial t_{r}}}\left[dt-{\frac {1}{c}}(\nabla {\mathfrak {R}}\cdot d\mathbf {r} +\nabla '{\mathfrak {R}}\cdot d\mathbf {r} ')\right]\\\end{aligned}}}
。
注意到
∂
ρ
(
r
′
,
t
r
)
∂
t
=
∂
t
r
∂
t
∂
ρ
(
r
′
,
t
r
)
∂
t
r
=
∂
ρ
(
r
′
,
t
r
)
∂
t
r
{\displaystyle {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t}}={\frac {\partial t_{r}}{\partial t}}\ {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t_{r}}}={\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t_{r}}}}
、
∇
R
=
R
^
{\displaystyle \nabla {\mathfrak {R}}={\hat {\boldsymbol {\mathfrak {R}}}}}
。
所以,源电荷密度
ρ
(
r
′
,
t
r
)
{\displaystyle \rho (\mathbf {r} ',\,t_{r})}
的梯度是
∇
ρ
(
r
′
,
t
r
)
=
−
1
c
∂
ρ
(
r
′
,
t
r
)
∂
t
r
∇
R
=
−
1
c
∂
ρ
(
r
′
,
t
r
)
∂
t
R
^
=
−
ρ
˙
(
r
′
,
t
r
)
c
R
^
{\displaystyle \nabla \rho (\mathbf {r} ',\,t_{r})=-{\frac {1}{c}}\ {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t_{r}}}\nabla {\mathfrak {R}}=-{\frac {1}{c}}\ {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t}}{\hat {\boldsymbol {\mathfrak {R}}}}=-{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}{\hat {\boldsymbol {\mathfrak {R}}}}}
;
其中,
ρ
˙
(
r
′
,
t
r
)
{\displaystyle {\dot {\rho }}(\mathbf {r} ',\,t_{r})}
定义为
∂
ρ
(
r
′
,
t
r
)
∂
t
{\displaystyle {\frac {\partial \rho (\mathbf {r} ',\,t_{r})}{\partial t}}}
。
将这公式代入,推迟纯量势
Φ
(
r
,
t
)
{\displaystyle \Phi (\mathbf {r} ,\,t)}
的梯度是
∇
Φ
(
r
,
t
)
=
1
4
π
ϵ
0
∫
V
′
[
−
ρ
˙
(
r
′
,
t
r
)
c
R
^
R
−
ρ
(
r
′
,
t
r
)
(
R
^
R
2
)
]
d
3
r
′
{\displaystyle \nabla \Phi (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}\left[-{\frac {{\dot {\rho }}(\mathbf {r} ',\,t_{r})}{c}}{\frac {\hat {\boldsymbol {\mathfrak {R}}}}{\mathfrak {R}}}-\rho (\mathbf {r} ',\,t_{r})\left({\frac {\hat {\boldsymbol {\mathfrak {R}}}}{{\mathfrak {R}}^{2}}}\right)\right]\,d^{3}\mathbf {r} '}
。
推迟向量势
A
(
r
,
t
)
{\displaystyle \mathbf {A} (\mathbf {r} ,\,t)}
对于时间的偏导数为:
∂
A
(
r
,
t
)
∂
t
=
μ
0
4
π
∫
V
′
J
˙
(
r
′
,
t
r
)
|
r
−
r
′
|
d
3
r
′
=
1
4
π
ϵ
0
c
2
∫
V
′
J
˙
(
r
′
,
t
r
)
|
r
−
r
′
|
d
3
r
′
{\displaystyle {\frac {\partial \mathbf {A} (\mathbf {r} ,\,t)}{\partial t}}={\frac {\mu _{0}}{4\pi }}\int _{{\mathcal {V}}'}{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '={\frac {1}{4\pi \epsilon _{0}c^{2}}}\int _{{\mathcal {V}}'}{\frac {{\dot {\mathbf {J} }}(\mathbf {r} ',\,t_{r})}{|\mathbf {r} -\mathbf {r} '|}}\,d^{3}\mathbf {r} '}
。
综合前面这两个公式,可以得到电场的杰斐缅柯方程式。同样方法,可以得到磁场的杰斐缅柯方程式。
对于任意介质,将前面所述电场和磁场的方程式加以延伸[ 4] ,可以从电荷密度
ρ
{\displaystyle \rho }
、电流密度
J
{\displaystyle \mathbf {J} }
、电极化强度
P
{\displaystyle \mathbf {P} }
、磁化强度
M
{\displaystyle \mathbf {M} }
,计算出电场
E
{\displaystyle \mathbf {E} }
、电位移
D
{\displaystyle \mathbf {D} }
、磁感应强度
B
{\displaystyle \mathbf {B} }
、磁场强度
H
{\displaystyle \mathbf {H} }
。
很多物理学家藉著马克士威方程组来诠释为甚么含时电场与含时磁场会互相生成。这诠释常常会被纳入电磁波形成的理论。但是,杰斐缅柯方程式显示出,实际上并不是这样[ 5] 。杰斐缅柯阐明:
马克士威方程组和其解答,都没有指明电场和磁场之间的因果关系。因此总结,电磁场是一个
对偶 实体,是由含时电荷分布和含时电流分布共同同时产生的电场和磁场。
— 欧雷格·杰斐缅柯, Causality Electromagnetic Induction and Gravitation,第16页
^ McDonald, Kirk T., The relation between expressions for time-dependent electromagnetic fields given by Jefimenko and by Panofsky and Phillips, American Journal of Physics, 1997, 65 (11): pp. 1074–1076
^ Jefimenko, Oleg D., Electricity and magnetism: an introduction to the theory of electric and magnetic fields 2nd, Electret Scientific Co., 1989, ISBN 9780917406089
^ Griffiths, David J. Introduction to Electrodynamics (3rd ed.). Prentice Hall. 1998. ISBN 0-13-805326-X .
^ Oleg D. Jefimenko, Solutions of Maxwell's equations for electric and magnetic fields in arbitrary media , American Journal of Physics 60(10) (1992), 899-902.
^ Jefimenko, Oleg D., Causality Electromagnetic Induction and Gravitation 2nd, Electret Scientific: pp. 16, 2000, ISBN 0-917406-23-0