# 黎納-維謝勢

## 物理理論

${\displaystyle t_{r}\ {\stackrel {def}{=}}\ t-{\frac {|\mathbf {r} -\mathbf {r} '|}{c}}\,\!}$

### 表達方程式

${\displaystyle {\boldsymbol {\mathfrak {R}}}=\mathbf {r} -\mathbf {r} '=\mathbf {r} -\mathbf {w} (t)\,\!}$

${\displaystyle \Phi (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\ {\frac {qc}{{\mathfrak {R}}c-{\boldsymbol {\mathfrak {R}}}\cdot \mathbf {v} }}\,\!}$
${\displaystyle \mathbf {A} (\mathbf {r} ,\,t)={\frac {\mathbf {v} }{c^{2}}}\Phi (\mathbf {r} ,\,t)\,\!}$

${\displaystyle \mathbf {r} '=\mathbf {w} (t_{r})\,\!}$
${\displaystyle \mathbf {v} =\mathbf {v} (t_{r})\,\!}$

### 推導

${\displaystyle \Phi (\mathbf {r} ,\,t)\ {\stackrel {def}{=}}\ {\frac {1}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}{\frac {\rho (\mathbf {r} ',\,t_{r})}{\mathfrak {R}}}\,d^{3}\mathbf {r} '\,\!}$
${\displaystyle \mathbf {A} (\mathbf {r} ,\,t)\ {\stackrel {def}{=}}\ {\frac {\mu _{0}}{4\pi }}\int _{{\mathcal {V}}'}{\frac {\mathbf {J} (\mathbf {r} ',\,t_{r})}{\mathfrak {R}}}\,d^{3}\mathbf {r} '\,\!}$

${\displaystyle \rho (\mathbf {r} ,\,t)=q\delta (\mathbf {r} -\mathbf {w} (t))\,\!}$

${\displaystyle \Phi (\mathbf {r} ,\,t)={\frac {q}{4\pi \epsilon _{0}}}\int _{{\mathcal {V}}'}{\frac {\delta (\mathbf {r} '-\mathbf {w} (t_{r}))}{\mathfrak {R}}}\,d^{3}\mathbf {r} '\,\!}$

${\displaystyle \Phi (\mathbf {r} ,\,t)={\frac {q}{4\pi \epsilon _{0}{\mathfrak {R}}}}\int _{{\mathcal {V}}'}\delta (\mathbf {r} '-\mathbf {w} (t_{r}))\,d^{3}\mathbf {r} '\,\!}$

${\displaystyle {\mathfrak {J}}={\cfrac {\partial {\boldsymbol {\eta }}}{\partial \mathbf {r} '}}={\begin{vmatrix}{\cfrac {\partial \eta _{x}}{\partial x'}}&{\cfrac {\partial \eta _{x}}{\partial y'}}&{\cfrac {\partial \eta _{x}}{\partial z'}}\\{\cfrac {\partial \eta _{y}}{\partial x'}}&{\cfrac {\partial \eta _{y}}{\partial y'}}&{\cfrac {\partial \eta _{y}}{\partial z'}}\\{\cfrac {\partial \eta _{z}}{\partial x'}}&{\cfrac {\partial \eta _{z}}{\partial y'}}&{\cfrac {\partial \eta _{z}}{\partial z'}}\\\end{vmatrix}}\,\!}$

${\displaystyle {\cfrac {\partial \eta _{x}}{\partial x'}}=1-{\cfrac {\partial w_{x}}{\partial x'}}=1-{\cfrac {\partial w_{x}}{\partial t_{r}}}\ {\cfrac {\partial t_{r}}{\partial x'}}=1-v_{x}{\cfrac {\partial t_{r}}{\partial x'}}\,\!}$
${\displaystyle {\cfrac {\partial \eta _{y}}{\partial x'}}={\cfrac {\partial w_{y}}{\partial x'}}={\cfrac {\partial w_{y}}{\partial t_{r}}}\ {\cfrac {\partial t_{r}}{\partial x'}}=v_{y}{\cfrac {\partial t_{r}}{\partial x'}}\,\!}$

${\displaystyle {\mathfrak {J}}=1-\mathbf {v} \cdot \nabla 't_{r}=1-{\hat {\boldsymbol {\mathfrak {R}}}}\cdot \mathbf {v} /c\,\!}$

${\displaystyle \Phi (\mathbf {r} ,\,t)={\frac {q}{4\pi \epsilon _{0}{\mathfrak {R}}}}\int _{{\mathcal {V}}'}\delta ({\boldsymbol {\eta }}){\cfrac {\partial \mathbf {r} '}{\partial {\boldsymbol {\eta }}}}\,d^{3}{\boldsymbol {\eta }}={\frac {q}{4\pi \epsilon _{0}{\mathfrak {R}}}}\int _{{\mathcal {V}}'}{\cfrac {\delta ({\boldsymbol {\eta }})}{\mathfrak {J}}}\,d^{3}{\boldsymbol {\eta }}={\frac {q}{4\pi \epsilon _{0}{\mathfrak {R}}}}\int _{{\mathcal {V}}'}{\cfrac {\delta ({\boldsymbol {\eta }})}{1-{\hat {\boldsymbol {\mathfrak {R}}}}\cdot \mathbf {v} /c}}\,d^{3}{\boldsymbol {\eta }}\,\!}$

${\displaystyle \Phi (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\ {\frac {qc}{{\mathfrak {R}}c-{\boldsymbol {\mathfrak {R}}}\cdot \mathbf {v} }}\,\!}$

### 相對論性導引

${\displaystyle \phi '={\frac {q}{4\pi \epsilon _{0}{\mathfrak {R}}'}}}$
${\displaystyle A'=0}$

${\displaystyle \phi =\gamma (\phi '-c\beta A')}$
${\displaystyle A=\gamma (-A'+\beta \phi '/c)}$

${\displaystyle \phi ={\frac {\gamma q}{4\pi \epsilon _{0}{\mathfrak {R}}'}}}$
${\displaystyle {\boldsymbol {A}}={\frac {\gamma q{\boldsymbol {\beta }}}{4\pi \epsilon _{0}{\mathfrak {R}}'c}}}$

${\displaystyle {\mathfrak {R}}'}$${\displaystyle {\mathfrak {R}}}$的变换关系也由洛仑兹变换给出：

${\displaystyle {\mathfrak {R}}'=c\Delta t'=c\gamma (\Delta t-{\boldsymbol {\beta }}\cdot {\boldsymbol {\mathfrak {R}}}/c)=\gamma ({\mathfrak {R}}-{\boldsymbol {\beta }}\cdot {\boldsymbol {\mathfrak {R}}})}$

${\displaystyle {\mathfrak {R}}'}$的表达式代入即得到黎納-维谢势。

### 物理意義

${\displaystyle \Phi (\mathbf {r} ,\,t)={\frac {1}{4\pi \epsilon _{0}}}\ {\frac {q}{\mathfrak {R}}}\,\!}$

### 移動中的帶電粒子的電磁場

${\displaystyle \mathbf {E} =-\nabla \Phi -{\dfrac {\partial \mathbf {A} }{\partial t}}\,\!}$
${\displaystyle \mathbf {B} =\nabla \times \mathbf {A} \,\!}$

${\displaystyle \mathbf {E} (\mathbf {r} ,\,t)={\frac {q}{4\pi \epsilon _{0}}}\ {\cfrac {\mathfrak {R}}{({\boldsymbol {\mathfrak {R}}}\cdot \mathbf {u} )^{3}}}[(c^{2}-v^{2})\mathbf {u} +{\boldsymbol {\mathfrak {R}}}\times (\mathbf {u} \times \mathbf {a} )]\,\!}$
${\displaystyle \mathbf {B} (\mathbf {r} ,\,t)={\frac {1}{c}}{\hat {\boldsymbol {\mathfrak {R}}}}\times \mathbf {E} (\mathbf {r} ,\,t)\,\!}$ ;

${\displaystyle \mathbf {E} ={\frac {q}{4\pi \epsilon _{0}}}\ {\frac {\hat {\boldsymbol {\mathfrak {R}}}}{{\mathfrak {R}}^{2}}}\,\!}$

## 參考文獻

1. ^ Marc Jouguet, La vie et l'oeuvre scientifique de Alfred-Marie Liénard, Exposé fait en séance mensuelle de la Société française des Electriciens, le 4 décembre, 1958 [2009-10-17], （原始内容存档于2009-07-06）
2. ^ Mulligan, Joseph F., Emil Wiechert（1861–1928）: Esteemed seismologist, forgotten physicist, American Journal of Physics, March, 69 (3): pp. 277–287
3. ^ Ribarič, Marijan; Šušteršič, Luka, Expansion in terms of time-dependent, moving charges and currents, SIAM Journal on Applied Mathematics, June, 55 (3): pp. 593–624, doi:10.1137/S0036139992241972
4. ^ Griffiths, David; Heald, Mark, Time-Dependent Generalization of the Biot-Savart and Coulomb laws, American Journal of Physics, Feb., 59 (2): pp. 111–117
5. 俞允强. 《电动力学简明教程》. 北京大学出版社. 1999: p298.
6. ^ Bo Thide. Electromagnetic Field Theory. Dover Publications, Incorporated. 2011-03-17 [2016-06-26]. ISBN 978-0-486-47773-2. （原始内容存档于2016-06-10）.
7. ^ Griffiths, David J. Introduction to Electrodynamics (3rd ed.). Prentice Hall. 1998: pp. 435–440. ISBN 0-13-805326-X.