# 憶阻器

## 理論

${\displaystyle M(q)={\frac {\mathrm {d} \Phi _{\mathrm {B} }}{\mathrm {d} q}}}$

• 電阻${\displaystyle R(I)={\frac {\mathrm {d} V}{\mathrm {d} I}}}$
• 電感${\displaystyle L(I)={\frac {\mathrm {d} \Phi _{\mathrm {B} }}{\mathrm {d} I}}}$
• 電容${\displaystyle {\frac {1}{C(q)}}={\frac {\mathrm {d} V}{\mathrm {d} q}}}$

${\displaystyle V(t)=M(q(t))I(t)\,}$

${\displaystyle {\frac {1}{C}}={\frac {\mathrm {d} U}{\mathrm {d} q}}={\frac {\mathrm {d} {\dot {\Phi }}}{\mathrm {d} q}}}$

${\displaystyle R={\frac {\mathrm {d} U}{\mathrm {d} I}}={\frac {\mathrm {d} {\dot {\Phi }}}{\mathrm {d} {\dot {q}}}}}$

${\displaystyle M={\frac {\mathrm {d} \Phi }{\mathrm {d} q}}}$

${\displaystyle L={\frac {\mathrm {d} \Phi }{\mathrm {d} I}}={\frac {\mathrm {d} \Phi }{\mathrm {d} {\dot {q}}}}}$

## 实现

IntelMicron聯合研發的3D XPoint。（Intel表示所用并不是ReRAM，根据推断，为相变存储器的可能性更大，此条消息存疑。）廠商表示，此技術的密度是DRAM的十倍、速度是NAND的千倍、寫入次數為10,000,000次。

## 種類

### 固態

2007年惠普公司資訊與量子系統實驗室的研究人員在的領導下成功研製了固態的憶阻器[14][15][16]－它是由一片雙層的二氧化鈦薄膜所形成，當電流通過時，其電阻值就會改變。固態的憶阻器的製造需要涉及物料的納米技術。這個憶阻器並不像其理論般涉及磁通量，或如電容器般儲存電荷，而是以化學技術來達至電阻電流歷史改變的性質。

## 可能應用

Some patents related to memristors appear to include applications in programmable logic,[21] signal processing,[22] neural networks,[23] and control systems.[24]

## 參考

1. ^ Chua, Leon O. Memristor - The Missing Circuit Element. IEEE Transactions on Circuit Theory. Sep 1971, CT–18 (5): 507–519 [2008-05-02]. （原始内容存档于2021-02-20）.
2. ^ Tour, James M and Tao He. Electronics: The fourth element. Nature. 2008, 453: 42–43 [2008-05-02]. doi:10.1038/453042a. （原始内容存档于2021-02-20）.
3. ^ C. B. Lee, B. S. Kang, M. J. Lee, S. E. Ahn, G. Stefanovich, W. X. Xianyu, K. H. Kim, J. H. Hur, H. X. Yin, Y. Park, and I. K. Yoo, Appl. Phys. Lett. 91, 082104 (2007).
4. ^ B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98, 033715 (2005).
5. ^ S. Q. Liu, N. J. Wu, and A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000).
6. ^ A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77, 139 (2000).
7. ^ W. Shen, R. Dittmann, U. Breuer, and R. Waser, Appl. Phys. Lett. 93, 222102 (2008).
8. ^ Strukov, Dmitri B, Snider, Gregory S, Stewart, Duncan R and Williams, Stanley R. The missing memristor found. Nature. 2008, 453: 80–83 [2008-05-02]. doi:10.1038/nature06932. （原始内容存档于2008-05-05）.
9. ^ 'Missing link' memristor created. EETimes. 2008-04-30 [2008-04-30]. （原始内容存档于2012-03-05）.
10. ^ Marks, Paul. Engineers find 'missing link' of electronics. New Scientist. 2008-04-30 [2008-04-30]. （原始内容存档于2008-05-01）.
11. ^ Researchers Prove Existence of New Basic Element for Electronic Circuits - Memristor. Physorg.com. 2008-04-30 [2008-04-30]. （原始内容存档于2021-02-20）.
12. ^ [spider.cs.ntou.edu.tw/twp/class/Electronic981/part2.pdf 電子電路學講義2
13. ^ Chen W-K. Circuit Elements, Modeling, and Equation Formulation. The Circuits and Filters Handbook 2nd ed. CRC Press 2003. ISBN 0-8493-0912-3.
14. ^ Fildes, Jonathan. Getting More from Moore's Law. BBC. 2007-11-13 [2008-04-30]. （原始内容存档于2021-02-20）.
15. ^ Bulletin for Electrical and Electronic Engineers of Oregon (PDF). Institute of Electrical and Electronics Engineers. Sept 2007 [2008-04-30]. （原始内容存档 (PDF)于2008-05-30）.
16. ^ R. Stanley Williams, HP biography. [2008-05-02]. （原始内容存档于2008-05-13）.
17. ^
18. ^ 存档副本. [2008-05-02]. （原始内容存档于2010-06-27）.
19. 存档副本. [2011-05-23]. （原始内容存档于2008-05-11）.
20. ^ Kanellos, Michael. HP makes memory from a once theoretical circuit. CNET News.com. 2008-04-30 [2008-04-30]. （原始内容存档于2021-02-20）.
21. ^ U.S. Patent 7,203,789. [2022-02-24]. （原始内容存档于2021-02-20）.
22. ^ U.S. Patent 7,302,513. [2022-02-24]. （原始内容存档于2021-02-20）.
23. ^ U.S. Patent 7,359,888. [2021-10-03]. （原始内容存档于2021-02-20）.
24. ^ U.S. Patent Application 11/976,927. [2022-02-24]. （原始内容存档于2021-02-20）.