# 地震序列

## 余震

### 修正大森法則

${\displaystyle n(t)={\frac {K}{c+t}}}$

• ${\displaystyle n(t)}$ 是主震發生後到特定時間 t 內地震的數量，
• ${\displaystyle K}$${\displaystyle c}$ 是係數。

${\displaystyle n(t)={\frac {k}{(c+t)^{p}}}}$

• ${\displaystyle p}$ 是和衰減速度相關的係數。

### Gutenberg－Richter關係式

${\displaystyle \!\,N=10^{A-bM}}$

• ${\displaystyle N}$ 在給定規模範圍內的地震數量。
• ${\displaystyle M}$ 最小規模，超過此規模的地震都能完整的被地震觀測網所偵測。
• ${\displaystyle A}$${\displaystyle b}$ 是係數。

## 參考文獻

1. ^ Omori, F. On the Fore-shocks of Earthquakes. Bulletin of the Imperial Earthquake Investigation Committee. Oct 1908.[失效連結]
2. Omori, F. On After-shocks. Seismological journal of Japan. 1894. （原始内容存档于2015-10-22）.
3. Mogi, Kiyoo. Some Discussions on Aftershocks, Foreshocks and Earthquake Swarms : the Fracture of a Semi-infinite Body Caused by an Inner Stress Origin and Its Relation to the Earthquake Phenomena. Earthquake Research Institute. Sep 1963. （原始内容存档于2012-02-05）.
4. ^ Jones, Lucile; Peter Molnar. Frequency of foreshocks. Nature. Aug 1976, 262: 677–679.
5. ^ Geoffrey, C. P. King; Ross S. Stein, Jian Lin. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America. Jun 1994, 84: 935–953.
6. ^ Utsu, T. A statistical study of the occurrence of aftershocks. Geophysical Magazine. 1961.
7. ^ Utsu, T.; Ogata, Y. Matsu'ura, R.S. The centenary of the Omori formula for a decay law of aftershock activity (PDF). Journal of Physics of the Earth. 1995, 43: 1–33. （原始内容 (PDF)存档于2008-05-10）.
8. ^ Gutenberg, B.; C.F. Richter. Frequency and energy of earthquakes. Seismicity of the Earth and Associated Phenomena. Princeton, N.J. 1954: 17–19.