截角五维正六胞体

维基百科,自由的百科全书
跳转至: 导航搜索
截角五维正六胞体
[[File:|220px]]
類型 五维均匀多胞体
維度 5
四维 12
6 {3,3,3}Schlegel wireframe 5-cell.png
6 t{3,3,3}Schlegel half-solid truncated pentachoron.png
45
30 {3,3}Tetrahedron.png
15 t{3,3}Truncated tetrahedron.png
80
60 {3}
20 {6}
75
頂點 30
顶点图 Truncated 5-simplex verf.png
五胞体
施萊夫利符號 t0,1{3,3,3,3}
考克斯特圖 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
考克斯特群 A5 [3,3,3,3], order 720
特性 convex

截角五维正六胞体有30个顶点,75条,80个,45个(15个正四面体和30个截角四面体),和12个四维胞(6个正五胞体和6个截角正五胞体)。

坐标[编辑]

简单地说,截角五维正六胞体的顶点坐标为六维空间的(0,0,0,0,1,2)(0,1,2,2,2,2)的全排列。

图像[编辑]

正交投影
Ak
考克斯特平面
A5 A4
Graph 5-simplex t01.svg 5-simplex t01 A4.svg
二面体群 [6] [5]
Ak
考克斯特平面
A3 A2
Graph 5-simplex t01 A3.svg 5-simplex t01 A2.svg
二面体群 [4] [3]

参考文献[编辑]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 5D, uniform polytopes (polytera) x3x3o3o3o - tix, o3x3x3o3o - bittix

外部链接[编辑]