雙圓錐

维基百科,自由的百科全书
跳到导航 跳到搜索
Bicone.svg

幾何學中,雙圓錐是一種雙錐體,是指基底為圓形的雙錐體,其可以視為將二個底面全等的圓錐,底面對底面皆合起來的三維幾何體[1],或是由二個全等的圓錐共同圍出的空間。每個雙圓錐皆由二個曲面所組成,具有一個曲邊和二個頂點,由於組成面有曲面以及組成邊為曲邊,因此會導致其歐拉特徵數不為二,其F-E+V=3。所有雙圓錐都是廣義的二面體的一種。

若雙錐體以橢圓形為基底則稱為雙橢圓錐。

雙圓錐是一種旋轉體,由菱形旋轉而成。

命名[编辑]

雙圓錐也可以稱為圓雙錐,在英語中稱為bicone或dicone,其中Bi- comes來自拉丁語、而Di-來自希臘語

體積與表面積[编辑]

已知半徑與高的的雙圓錐的體積表面積存在下面等式:[2]

其中

S為雙圓錐的表面積
V為雙圓錐的體積
E為基底(赤道橫切面)的面積
H為雙圓錐的
h為H的一半
c為斜高
r為基底(赤道橫切面)的半徑
e為基底(赤道橫切面)的周長

它們分別為圓錐的二倍體積與表面積是圓錐側面積的二倍,但若上下圓錐高不等,則將整個圖形分個成二個圓錐分別計算,然後再相加,而癟面積只需計算所有側面積的總合。

相關多面體[编辑]

雙圓錐可以視為雙錐體系列的極限,即所謂雙無限角錐,當邊數趨近於無窮大而邊長趨近於零時則成為雙圓錐。

半正对偶双棱锥
2 3 4 5 6 7 8 9 10 11 12 ...
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 2.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 8.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 9.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 1x.pngCDel 0x.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 1x.pngCDel 1x.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 1x.pngCDel 2x.pngCDel node.png CDel node f1.pngCDel 2.pngCDel node f1.pngCDel infin.pngCDel node.png
Biangular bipyramid.png Triangular bipyramid.png Square bipyramid.png Pentagonale bipiramide.png Hexagonale bipiramide.png Heptagonal bipyramid.png Octagonal bipyramid.png Enneagonal bipyramid.png Decagonal bipyramid.png Bicone.svg
作为球面镶嵌
Spherical digonal bipyramid.png Spherical trigonal bipyramid.png Spherical square bipyramid.png Spherical pentagonal bipyramid.png Spherical hexagonal bipyramid.png Spherical heptagonal bipyramid.png Spherical octagonal bipyramid.png Spherical enneagonal bipyramid.png Spherical decagonal bipyramid.png Spherical hendecagonal bipyramid.png Spherical dodecagonal bipyramid.png

但實際上雙無限角錐應為平面鑲嵌[3],因為沒有多邊形能使其邊長為零或趨近於零,否則會退化成一個點。

E2 tiling 22i-2 dual.png

參見[编辑]

參考文獻[编辑]

  1. ^ bicone merriam-webster.com [2014-6-25]
  2. ^ Weisstein, Eric W. "Bicone." From MathWorld--A Wolfram Web Resource.
  3. ^ Jim McNeill: Tessellations of the Plane orchidpalms.com [2014-6-25]

外部連結[编辑]

埃里克·韦斯坦因. Bicone. MathWorld.