高斯求积

维基百科,自由的百科全书
跳转至: 导航搜索

以德国数学家卡尔·弗里德里希·高斯所命名的一种数值积分中的求积规则。当我们要求解某个函数的积分 ,其数值解可以由近似,其中为权重。高斯求积仅仅当函数可以由在区间[-1, 1]的多项式近似时才能获得准确的近似解,这种方法并不适合函数具有奇异点的情况。于是乎,我们可以把函数写作,其中是近似多项式,是已知的权重函数,这样我们就有

常用的权重函数有

(高斯切比雪夫)

以及

(高斯埃米特)。

高斯勒让得求积[编辑]

对于上述的最简单的积分形式,即权重函数时,关联多项式为勒让得多项式,这种方法通常称为高斯勒让德求积,此时权重函数为下式,

的第個根。

对于求解低阶积分,选择的点的数目、位置和权重如下表所示。

点的数目, n 点的位置, xi 权重, wi
1 0 2
2 1
3 0 89
59
4
5 0 128225

变区间法则[编辑]

在使用高斯求积的时候必须要将积分区间变换到,可利用變數變換得:

對應的高斯求積近似式为

其他形式[编辑]

对于如下的通用积分式来说,

时,即为上述内容。我们还可以用别的积分规则,如下表所示。

区间 ω(x) 正交多项式
[−1, 1] 勒让德多项式
(−1, 1) 雅可比多项式
(−1, 1) 切比雪夫多项式 (第一类)
[−1, 1] 切比雪夫多项式 (第二类)
[0, ∞) 拉盖尔多项式
(−∞, ∞) 埃尔米特多项式