絕對收斂是數學中無窮級數和廣義積分的一種性質。一個數項級數或一個積分絕對收斂當且僅當級數的每一項或者積分的函數取絕對值(或範數)後仍然收斂或可積。比如,一個實數項或複數項級數 絕對收斂當且僅當。某個函數的廣義積分或瑕積分是絕對收斂的,當且僅當取絕對值或範數後的函數的積分收斂:。一個積分絕對收斂的函數也稱為絕對可積函數。
在無窮級數的研究中,絕對收斂性是一項足夠強的條件,許多有限項級數具有的性質,在一般的無窮級數不一定滿足,只有在絕對收斂的無窮級數也會具有該性質。例如任意重排一個絕對收斂的級數之通項的次序,不會改變級數的和,又如,兩個絕對收斂的無窮級數通項的乘積以任何方式排列成的級數和都為原來兩個級數和的乘積。收斂但不是絕對收斂的無窮級數或積分被稱為條件收斂的。
絕對收斂是建立在實數絕對值、複數的模長以及更一般的,向量的範數概念之上的。絕對值、模長都是範數概念的特例。給定一個向量空間,範數是將中元素映射到非負實數上的一個函數,並且滿足以下性質:
- 將且僅將零向量映射到0:
- 齊次性:
- 次可加性:
裝備了範數的向量空間被稱為賦范向量空間,可以定義距離:這樣可以定義上的拓撲結構,從而定義收斂乃至絕對收斂。設有由中元素組成的級數:,則此級數絕對收斂當且僅當由每一項向量的範數構成的正項級數收斂:
當級數的每一項是實數或複數時,對應的是實向量空間和復向量空間,這時對應的範數是實數的絕對值和複數的模長,都寫作,所以實數項或複數項的級數絕對收斂,當且僅當由每一項元素的絕對值或模長構成的正項級數收斂:
如果賦范向量空間是完備的(即所謂的巴拿赫空間),那麼中絕對收斂的無窮級數必定收斂。反之,如果中絕對收斂的無窮級數必定收斂,那麼可以推出是巴拿赫空間。
證明:
假設是完備空間,由中元素組成的絕對收斂的級數。則
因此級數滿足柯西性質,即:任意,存在自然數,使得對任何,都有
所以對任意的,級數中的部分的範數:
這說明級數的部分和是柯西序列。因此在完備空間中,級數收斂: