跳至內容

配邊

維基百科,自由的百科全書
(W; M, N)的配邊

數學中,配邊英文cobordism 來自法文bord流形等價關係。它使用邊界的拓撲概念。若兩個流形M和N的不交並是另一個流形W的邊界,那麼M和N這兩個流形是配邊的。此外M和N的配邊是W:

.

配邊縮寫為 。M的配邊類(cobordism class)是與M配邊的所有流形的集合[1]

例子

[編輯]

最簡單的例子是區間 I =[0,1]。這是 {0}和{1}這兩個0-維流形的1-維配邊。

Pair of pants的配邊

如果MN是兩個圓, 那麼MN 的不交並是pair of pants(W)的邊界。所以pair of pants是M和N的配邊。

3維配邊 是0-維流形; 是2-環面 (見割補理論

參見

[編輯]

腳註

[編輯]
  1. ^ 若M和N是維的,則W是維的,而且這是維的配邊。

參考文獻

[編輯]
  • John Frank Adams, Stable homotopy and generalised homology, Univ. Chicago Press (1974).
  • Anosov, Dmitri; bordism
  • 邁克爾·阿蒂亞, Bordism and cobordism Proc. Camb. Phil. Soc. 57, pp. 200–208 (1961).
  • Dieudonne, Jean Alexandre. A history of algebraic and differential topology.
  • Kosinski, Antoni A. Differential Manifolds. Dover Publications. October 19, 2007. 
  • Madsen, Ib. The classifying spaces for surgery and cobordism of manifolds. 普林斯頓
  • 約翰·米爾諾,A survey of cobordism theory.
  • 謝爾蓋·彼得羅維奇·諾維科夫, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855–951.
  • 列夫·龐特里亞金, Smooth manifolds and their applications in homotopy theory American Mathematical Society Translations, Ser. 2, Vol. 11, pp. 1–114 (1959).
  • 丹尼爾·奎倫, On the formal group laws of unoriented and complex cobordism theory Bull. Amer. Math. Soc., 75 (1969) pp. 1293–1298.
  • Douglas Ravenel, Complex cobordism and stable homotopy groups of spheres, Acad. Press (1986).
  • Yuli Rudyak Cobordism.
  • Yuli B. Rudyak, On Thom spectra, orientability, and (co)bordism, Springer (2008).
  • Robert E. Stong, Notes on cobordism theory, Princeton Univ. Press (1968).
  • Taimanov, Iskander. Topological library. Part 1: cobordisms
  • 勒內·托姆, Quelques propriétés globales des variétés différentiables, Commentarii Mathematici Helvetici 28, 17-86 (1954).
  • Wall, C. T. C. Determination of cobordism ring. Annals of Mathematics(數學年刊
  • Bordism on the Manifold Atlas.
  • B-Bordism Archive.is存檔,存檔日期2012-05-29 on the Manifold Atlas.