配邊
外觀
此條目需要精通或熟悉相關主題的編者參與及協助編輯。 (2020年2月2日) |
在數學中,配邊(英文:cobordism 來自法文的 bord)是緊流形的等價關係。它使用邊界的拓撲概念。若兩個流形M和N的不交並是另一個流形W的邊界,那麼M和N這兩個流形是配邊的。此外M和N的配邊是W:
.
配邊縮寫為 。M的配邊類(cobordism class)是與M配邊的所有流形的集合。 [1]
例子
[編輯]最簡單的例子是區間 I =[0,1]。這是 {0}和{1}這兩個0-維流形的1-維配邊。
如果M 是圓,N是兩個圓, 那麼M 和 N 的不交並是pair of pants(W)的邊界。所以pair of pants是M和N的配邊。
參見
[編輯]腳註
[編輯]- ^ 若M和N是維的,則W是維的,而且這是維的配邊。
參考文獻
[編輯]- John Frank Adams, Stable homotopy and generalised homology, Univ. Chicago Press (1974).
- Anosov, Dmitri; bordism
- 邁克爾·阿蒂亞, Bordism and cobordism Proc. Camb. Phil. Soc. 57, pp. 200–208 (1961).
- Dieudonne, Jean Alexandre. A history of algebraic and differential topology.
- Kosinski, Antoni A. Differential Manifolds. Dover Publications. October 19, 2007.
- Madsen, Ib. The classifying spaces for surgery and cobordism of manifolds. 普林斯頓
- 約翰·米爾諾,A survey of cobordism theory.
- 謝爾蓋·彼得羅維奇·諾維科夫, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855–951.
- 列夫·龐特里亞金, Smooth manifolds and their applications in homotopy theory American Mathematical Society Translations, Ser. 2, Vol. 11, pp. 1–114 (1959).
- 丹尼爾·奎倫, On the formal group laws of unoriented and complex cobordism theory Bull. Amer. Math. Soc., 75 (1969) pp. 1293–1298.
- Douglas Ravenel, Complex cobordism and stable homotopy groups of spheres, Acad. Press (1986).
- Yuli Rudyak Cobordism.
- Yuli B. Rudyak, On Thom spectra, orientability, and (co)bordism, Springer (2008).
- Robert E. Stong, Notes on cobordism theory, Princeton Univ. Press (1968).
- Taimanov, Iskander. Topological library. Part 1: cobordisms
- 勒內·托姆, Quelques propriétés globales des variétés différentiables, Commentarii Mathematici Helvetici 28, 17-86 (1954).
- Wall, C. T. C. Determination of cobordism ring. Annals of Mathematics(數學年刊)
- Bordism on the Manifold Atlas.
- B-Bordism Archive.is的存檔,存檔日期2012-05-29 on the Manifold Atlas.