截半立方體堆砌

维基百科,自由的百科全书
跳转至: 导航搜索
截半立方體堆砌
HC A3-P3.png
Rectified cubic tiling.png
線架圖
類型 均勻堆砌
維度 3
r{4,3} Uniform polyhedron-43-t1.png
{3,4} Uniform polyhedron-43-t2.svg
{3} Alchemy fire symbol.svg
{4} Kvadrato.svg
顶点图 Rectified cubic honeycomb verf.png
長方體
施萊夫利符號 r{4,3,4} or t1{4,3,4}
r{3[4]}
考克斯特記號英语Coxeter–Dynkin_diagram CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png = CDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png = CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
類比 截半正方形鑲嵌
對稱群
空間群 Pm3m (221)
考克斯特群 , [4,3,4]
纖維流形 4:2
對偶多胞體 雙四角錐堆砌
特性 顶点正英语vertex-transitive

在幾何學中,截半立方體堆砌是一種歐幾里得三維空間的半正堆砌,由截半立方體正八面體堆砌而成,是三維空間內28個半正密鋪之一,其對偶多面體為雙四角錐堆砌。

康威截半立方體堆砌cuboctahedrille[1],因為它可以藉由立方體堆砌經過「截半」變換構造而來,也可以視為由截半立方體堆砌而得,但截半立方體無法單獨堆砌,必須和其他多面體一起堆砌,而截半立方體堆砌是由截半立方體和正八面體共同堆砌而得。

表面塗色[编辑]

對稱性 [4,3,4]
[1+,4,3,4]
[4,31,1],
[4,3,4,1+]
[4,31,1],
[1+,4,3,4,1+]
[3[4]],
空間群 Pm3m
(221)
Fm3m
(225)
Fm3m
(225)
F43m
(216)
表面塗色 Rectified cubic honeycomb.png Rectified cubic honeycomb4.png Rectified cubic honeycomb3.png Rectified cubic honeycomb2.png
考克斯特符號英语Coxeter diagram CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png
頂點圖 Rectified cubic honeycomb verf.png Rectified alternate cubic honeycomb verf.png Cantellated alternate cubic honeycomb verf.png T02 quarter cubic honeycomb verf.png
頂點

對稱性
D4h
[4,2]
(*224)
order 16
D2h
[2,2]
(*222)
order 8
C4v
[4]
(*44)
order 8
C2v
[2]
(*22)
order 4

結構[编辑]

截半立方體堆砌可以被切割出一個截半六邊形鑲嵌的面,從截半立方體的六邊形中心切割,創建了兩個正三角帳塔。這部分的結構均勻,可用考克斯特記號CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png表示,符號為s3{2,6,3}。

Runcic snub 263 honeycomb.png

参考文獻[编辑]

  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (包含11个凸半正镶嵌、28个凸半正堆砌、和143个凸半正四维砌的全表)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication参与编辑, 1995, ISBN 978-0-471-01003-6 [1]
    • (22页) H.S.M.考克斯特, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 半正空间镶嵌)
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  1. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)