截半立方體

维基百科,自由的百科全书
跳转至: 导航搜索
截半立方體
截半立方體
(按這裡觀看旋轉模型)
類別 半正多面體
14
24
頂點 12
歐拉特徵數 F=14, E=24, V=12 (χ=2)
面的種類 正三角形
正方形
面的佈局英语Face configuration 8{3}+6{4}
頂點圖 3.4.3.4
考克斯特符號英语Coxeter-Dynkin diagram CDW dot.pngCDW 4.pngCDW ring.pngCDW 3.pngCDW dot.png
CDW ring.pngCDW 3.pngCDW dot.pngCDW 3.pngCDW ring.png
施萊夫利符號 t1{4,3}
t0,2{3,3}
威佐夫符號英语Wythoff symbol 2 | 3 4
3 3 | 2
康威表示法 CO
對稱群 Oh
and Th
參考索引 U07, C19, W11
對偶 菱形十二面體
特性 quasiregular
立體圖 Cuboctahedron vertfig.png
3.4.3.4
頂點圖
Rhombicdodecahedron.jpg
菱形十二面體
(對偶多面體)
Cuboctahedron flat.svg
(展開圖)

在幾何學中,截半立方體是一種十四面體,由八個三角形與六個正方形組成,具有14個、12個頂點以及24條邊。是一種阿基米德立體[1],屬於半正多面體擬正多面體。其對偶多面體菱形十二面體

性質[编辑]

截半立方體具有十二個結構相等的頂點,皆為兩個三角形與兩個正方形的公共頂點、24個結構相等的稜,相鄰面皆為三角形與正方形,兩面角反正割根號三[2],約125.26,因此同時具有點可遞和邊可遞的性質,因此是一種均勻多面體半正多面體擬正多面體,並且為阿基米德發現的13種半正多面體之一,因此也屬於阿基米德立體。此外,由於截半立方體可以視為立方體和其對偶多面體正八面體中三角形與正方形的組合,因此又是一種立方體和其對偶多面體正八面體立體混合物

截半立方體形成的四個正六邊形,以顏色分隔

截半立方體立方體透過截半變換構造而成的多面體,簡而言之是用立方體由一條棱斬到另一條棱的中點(即斬去立方體的頂點)而成。因此其正方形面的數目和立方體的面都為6,其三角形面數目和立方體的頂點數目都為8,共有面14個。因為同樣種類的正多邊形面棱不相交,故可以計算其邊數乘以面的數目來得其棱的數目:3×8=4×6=24。

截半立方體立方體透過截半變換構造而成的多面體,也可以由對偶——正八面體透過截半變換構成[3],因此也稱為截半八面體

截半立方體每六條棱可以成為一個正六邊形,共有四個獨立的六邊形。

座標[编辑]

一個邊長2的平方根的截半立方體,其頂點座標位於(0, ±1, ±1),(±1, 0, ±1),(±1, ±1, 0)[4],(0, ±1, ±1)的全排列。

體積與表面積[编辑]

表面積,體積,其中是該截半立方體的邊長[2]

表面積 =
體積 =

作法[编辑]

截半立方體的作法有兩種,一種由立方體出發,另外一種由正八面體出發,同樣都是透過截半變換來構造。從立方體出發的方法為:將立方體的八個頂點切到一半就可以得到一個截半立方體,而從正八面體出發的作法一樣是將頂點切到一半:將正八面體的六個頂點切到一半就可以得到一個截半立方體。

截半立方體的康威多面體記號為aC或aO,由於截半變換的性質,對偶後結伴得到相同結果,即 a = ad ,因此可以得到 aC (截半立方體) = adC = a(dC) = aO (截半八面體)。

另外也可以由編號3的詹森多面體,J3——三角帳塔組成,兩個相反並交錯堆疊,稱為異相雙三角帳塔,而另外一種叫做同相雙三角帳塔,也是一種詹森多面體,編號J27

Cuboctahedron 3 planes.pngTriangular cupola.pngTriangular orthobicupola.png

其他名稱[编辑]

正交投影[编辑]

截半立方體的正交投影
正方形
正三角形
頂點 歪斜
3-cube t1 B2.svg 3-cube t1.svg Cube t1 v.png Cube t1 e.png Cuboctahedron B2 planes.png Cuboctahedron 3 planes.png
[4] [6] [2] [2]
菱形十二面體為截半立方體的對偶
Dual cube t1 B2.png Dual cube t1.png Dual cube t1 v.png Dual cube t1 e.png Dual cube t1 skew1.png Dual cube t1 skew2.png

球面鑲嵌[编辑]

Uniform tiling 432-t1.png Cuboctahedron stereographic projection square.png
正方形為中心
Cuboctahedron stereographic projection triangle.png
正三角形為中心
平行投影 施莱格尔投影英语Schlegel diagram

相關多面體及鑲嵌[编辑]

正四面体家族半正多面体
对称性: [3,3], (*332) [3,3]+, (332)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-t0.png Uniform polyhedron-33-t01.png Uniform polyhedron-33-t1.png Uniform polyhedron-33-t12.png Uniform polyhedron-33-t2.png Uniform polyhedron-33-t02.png Uniform polyhedron-33-t012.png Uniform polyhedron-33-s012.png
{3,3} t0,1{3,3} t1{3,3} t1,2{3,3} t2{3,3} t0,2{3,3} t0,1,2{3,3} s{3,3}
半正多面体对偶
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Tetrahedron.svg Triakistetrahedron.jpg Hexahedron.svg Triakistetrahedron.jpg Tetrahedron.svg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Dodecahedron.svg
V3.3.3 V3.6.6 V3.3.3.3 V3.6.6 V3.3.3 V3.4.3.4 V4.6.6 V3.3.3.3.3

也可以由倒角立方体經過特殊的切割方式而得。在切割成截半立方體之前可以得到一些不同的多面體,例如:

(可能的來源) 倒角立方體
(截邊立方體)
截角倒角立方體
(截邊截角立方體)
截半倒角立方體
(截邊截半立方體)
截半立方體
圖像 Rhombic Dodecahedron Before Cutting.svg
菱形十二面體
Chamfered Cube by Cutting Rhombic Dodecahedron.svg
倒角立方體
Rhombicuboctahedron by Cutting Rhombic Dodecahedron.svg
小斜方截半立方体
Truncated Cuboctahedron by Cutting Rhombic Dodecahedron.svg
大斜方截半立方体
Cuboctahedron by Cutting Rhombic Dodecahedron.svg
截半立方體
考克斯特符號英语Coxeter–Dynkin diagram CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
對偶多面體
對偶 Cuboctahedron.png
截半立方體
Tetrakis cuboctahedron.png
四角化截半立方體
Strombic icositetrahedron.png
鳶形二十四面體
Disdyakis dodecahedron.png
六角化八面體
Rhombic dodecahedron.png
菱形十二面體
考克斯特符號英语Coxeter–Dynkin diagram CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png
半正正八面体家族多面体
对称性: [4,3], (*432) [4,3]+, (432) [1+,4,3], (*332) [4,3+], (3*2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg Uniform polyhedron-43-t12.svg Uniform polyhedron-43-t2.svg Uniform polyhedron-43-t02.png Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t2.png Uniform polyhedron-43-h01.svg
{4,3} t0,1{4,3} t1{4,3} t1,2{4,3} {3,4} t0,2{4,3} t0,1,2{4,3} s{4,3} h{4,3} h1,2{4,3}
半正多面体的对偶
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Dodecahedron.svg
V4.4.4 V3.8.8 V3.4.3.4 V4.6.6 V3.3.3.3 V3.4.4.4 V4.6.8 V3.3.3.3.4 V3.3.3 V3.3.3.3.3


其他領域[编辑]

Tetrakaidecahedral methane clathrate1.png
截半立方體是甲烷水合物的一種形式
甲烷被排列成截半立方體冰分子包住

參見[编辑]

參考文獻[编辑]

  1. ^ Cromwell, P. Polyhedra, CUP hbk (1997), pbk. (1999). Ch.2 p.79-86 Archimedean solids
  2. ^ 2.0 2.1 MathWorldCuboctahedron的资料,作者:埃里克·韦斯坦因
  3. ^ Ghyka, Matila. The geometry of art and life. [Nachdr.] New York: Dover Publications. 1977: 51–56, 81–84. ISBN 9780486235424. 
  4. ^ Weisstein, Eric W. Cuboctahedron. CRC Concise Encyclopedia of Mathematics. 2nd. Hoboken: CRC Press: 620–621. 2002. ISBN 9781420035223. 
  5. ^ 珍.E.霍夫特(Jane E. Hoffelt). 我們住在同一個世界. 大穎【生活學習】. 胡洲賢 譯. 大穎. 2009. ISBN 9789866407758.  我們住在同一個世界(培養孩子包容的世界觀)~獲第32次中小學生優良課外讀物推介 戴美心地圖 [2016-1-27]
  6. ^ 一般性地圖資料代碼 國家圖書館編目 第四頁 dg = 戴美克森氏投影 (dimaxion) 2001年10月
  7. ^ Vector Equilibrium: R. Buckminster Fuller

外部連結[编辑]