大斜方截半二十面体

维基百科,自由的百科全书
跳到导航 跳到搜索
大斜方截半二十面體
大斜方截半二十面体
(按這裡觀看旋轉模型)
類別 半正多面體
62
180
頂點 120
歐拉特徵數 F=62, E=180, V=120 (χ=2)
面的種類 正方形
正六邊形
正十邊形
面的佈局英语Face configuration 30{4}+20{6}+12{10}
頂點圖 4.6.10
考克斯特符號英语Coxeter-Dynkin diagram CDW ring.pngCDW 5.pngCDW ring.pngCDW 3.pngCDW ring.png
施萊夫利符號
威佐夫符號英语Wythoff symbol 2 3 5 |
康威表示法 grID
對稱群 Ih
參考索引 U28, C31, W16
對偶 六角化二十面體
特性 環帶多面體
立體圖 Great rhombicosidodecahedron vertfig.png
4.6.10
頂點圖
Disdyakistriacontahedron.jpg
六角化二十面體
(對偶多面體)
Truncated icosidodecahedron flat.svg
(展開圖)

幾何學中,大斜方截半二十面體(英語:Great rhombicosidodecahedron)又稱為截角截半二十面體(英語:Truncated icosidodecahedron)是一種半正多面體,由於其具有點可遞的性質,因此屬於阿基米德立體[1],是十三種由2種以上的正多邊形組成的非柱體幾何圖形之一。

大斜方截半二十面體共有62個面、180條稜和120個頂點,是凸均勻多面體頂點數最多也是稜數最多的多面體。由於其每個面都具有點對稱性(與180°的旋轉對稱等效),因此是一種環帶多面體

命名[编辑]

截半二十面體及其截角的結果

名稱截角截半二十面體(英語:Truncated icosidodecahedron)最初由约翰内斯·开普勒給出,但這個名稱有歧義,因為直接將截半二十面體透過截角變換的結果,其所形成的四邊形面是一個長方形而不是正方形,然而這個立體圖形在拓樸上與大斜方截半二十面體等價。

大斜方截半二十面體還有幾個不同的名稱:

性質[编辑]

由30个正方形,20个正六边形和12个正十边形组成,有120个顶点和180条棱。除棱柱和反棱柱以外,如果所有的阿基米德立體具有相同的棱长,大斜方截半二十面体将具有最大的表面积和体积。

尺寸[编辑]

若一大斜方截半二十面體的邊長為a,則有下列性質:

  • 體積表面積
    [7][8]
    [7][8]
  • 外接球半徑
    [8],由此可知,外接球體積為,其值約為[8]
  • 內切球半徑
    ,由此可知,內切球體積為,其值約為[8]
  • 面心距
    • 正方形面心距為:[8]
    • 正六邊形面心距為:[8]
    • 正十邊形面心距為:[8]
  • 為大斜方截半二十面體的邊心距、十二面體外接球半徑為、正二十面體外接球半徑為,和菱形三十面體長對角線的接球半徑為。 存在下列等式:
    • [9]
    • [9]
    • [9]
    • [9]
    • [9]

作法[编辑]

将一个正十二面体正二十面体)三十条棱都切一刀,在二十(十二)个顶点处也切一刀,但是要切的薄一点,就可以得到一个大斜方截半二十面体。

頂點坐標[编辑]

在三维笛卡儿坐标系中,以原点为幾何中心,边长2τ-2的大斜方截半二十面体的坐标是以下坐标的全偶排列[10]

1/φ, ±1/φ, ±(3 + φ)),
2/φ, ±φ, ±(1 + 2φ)),
1/φ, ±φ2, ±(−1 + 3φ)),
(±(2φ − 1), ±2, ±(2 + φ)) and
φ, ±3, ±2φ),

其中φ = 1 + 5/2黄金分割率

相關多面體與鑲嵌[编辑]

Conway polyhedron b3I.png Conway polyhedron b3D.png
領結二十面體和領結十二面體的結構可以看做是大斜方截半二十面體的正方形面被分割成兩個梯形[11]

大斜方截半二十面體又稱為截角截半二十面體,是正二十面體截半後再經過特殊的截角變換後的結果,其他也是由正二十面體透過康威變換得到的多面體有:

正二十面体家族半正多面体
對稱群: [5,3]英语Icosahedral symmetry, (*532) [5,3]+, (532)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-53-t0.png Uniform polyhedron-53-t01.png Uniform polyhedron-53-t1.png Uniform polyhedron-53-t12.png Uniform polyhedron-53-t2.png Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
{5,3} t0,1{5,3} t1{5,3} t0,1{3,5} {3,5} t0,2{5,3} t0,1,2{5,3} s{5,3}
半正多面体对偶
CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5


大斜方截半二十面體圖[编辑]

大斜方截半二十面體圖
Truncated icosidodecahedral graph.png
5階對稱性
顶点 120
180
半径 15
直径 15
围长 4
自同构群 120 (A5×2)
色数 2
属性 立方體英语Cubic graph哈密顿正則零對稱性英语Zero-symmetric graph

在圖論的數學領域中,與大斜方截半二十面體相關的圖為大斜方截半二十面體圖又稱為截角截半二十面體圖,是大斜方截半二十面體之邊與頂點的圖英语1-skeleton,是一種阿基米德圖英语Archimedean graph[12]

性質[编辑]

大斜方截半二十面體圖與大斜方截半二十面體有相同的拓樸結構,其頂點與邊的數量及結構都與阿基米德立體中的大斜方截半二十面體相同,共有120個頂點和180條邊,是阿基米德圖中,頂點和邊數最多的圖,且是一個位於零對稱性英语Zero-symmetric graph立方體英语Cubic graph的阿基米德圖[12]

施萊格爾圖
Truncated icosidodecahedral graph-hexcenter.png
3階對稱性
Truncated icosidodecahedral graph-squarecenter.png
2階對稱性

參見[编辑]

參考文獻[编辑]

  1. Cromwell, P.; Polyhedra, CUP hbk (1997), pbk. (1999).
  2. 埃里克·韦斯坦因. GreatRhombicosidodecahedron. MathWorld. 埃里克·韦斯坦因. Archimedean solid. MathWorld. 
  3. Richard Klitzing, 3D convex uniform polyhedra, x3x5x - grid
  1. ^ 1.0 1.1 Cromwell, P. Polyhedra. United Kingdom: Cambridge. 1997: 79–86 Archimedean solids. ISBN 0-521-55432-2. 
  2. ^ Wenninger, Magnus英语Magnus J. Wenninger, Polyhedron Models, Cambridge University Press, 1974, ISBN 978-0-521-09859-5, MR 0467493 
  3. ^ Wenninger, (Model 16[2], p. 30)
  4. ^ Williams, Robert. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. 1979. ISBN 0-486-23729-X. 
  5. ^ Williamson[4] (Section 3-9, p. 94)
  6. ^ Cromwell[1] (p. 82)
  7. ^ 7.0 7.1 埃里克·韦斯坦因. Great rhombicosidodecahedron. MathWorld. 
  8. ^ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 Harish Chandra Rajpoot. Mathematical analysis of great rhombicosidodecahedron (the largest Ar…. 2015-03-19 [2017-07-03]. (原始内容存档于2018-08-26). 
  9. ^ 9.0 9.1 9.2 9.3 9.4 Robert Whittaker. The Great Rhombicosidodecahedron | polyhedra.mathmos.net. polyhedra.mathmos.net. [2017-07-11]. (原始内容存档于2016-07-04) (英语). 
  10. ^ 埃里克·韦斯坦因. Icosahedral group. MathWorld. 
  11. ^ Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons 页面存档备份,存于互联网档案馆 Craig S. Kaplan
  12. ^ 12.0 12.1 Read, R. C.; Wilson, R. J., An Atlas of Graphs, Oxford University Press: 269, 1998 

外部連結[编辑]