# 普朗克單位制

（重定向自普朗克單位

• 萬有引力常數${\displaystyle G\,\!}$
• 約化普朗克常數${\displaystyle \hbar \,\!}$
• 在真空裏的光速${\displaystyle c\,\!}$
• 庫侖常數${\displaystyle k_{e}={\frac {1}{4\pi \epsilon _{0}}}\,\!}$，其中${\displaystyle \epsilon _{0}\,\!}$真空電容率，也就是電常數
• 波茲曼常數${\displaystyle k_{B}\,\!}$

## 簡化物理方程式

${\displaystyle =i\hbar {\frac {\partial \psi }{\partial t}}(\mathbf {r} ,\,t)\,\!}$
${\displaystyle -{\frac {1}{2m}}\nabla ^{2}\psi (\mathbf {r} ,\,t)+V(\mathbf {r} ,\,t)\psi (\mathbf {r} ,\,t)\,\!}$
${\displaystyle =i{\frac {\partial \psi }{\partial t}}(\mathbf {r} ,\,t)\,\!}$

${\displaystyle \nabla \cdot \mathbf {B} =0\ \,\!}$
${\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}\,\!}$
${\displaystyle \nabla \times \mathbf {B} =\mu _{0}\mathbf {J} +\mu _{0}\epsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}\,\!}$

${\displaystyle \nabla \cdot \mathbf {E} =4\pi \rho \ \,\!}$

${\displaystyle \nabla \cdot \mathbf {B} =0\ \,\!}$
${\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}\,\!}$
${\displaystyle \nabla \times \mathbf {B} =4\pi \mathbf {J} +{\frac {\partial \mathbf {E} }{\partial t}}\,\!}$