本页使用了标题或全文手工转换

色散关系

维基百科,自由的百科全书
跳转至: 导航搜索
光在稜鏡折射是由于色散

物理科学電機工程學中,色散关系描述波在介质中传播的色散现象的性质。色散关系将波的波长波數与其頻率建立了联系。由这组关系,波的相速度群速度有了方便的确定介质中折射率的表达式。克拉莫-克若尼關係式可以描述波的传播衰减英语attenuation的频率依赖性,這關係比與幾何相關和與材料相關的色散关系更具一般性。

色散的原因可能是几何边界条件(波导、浅水)或是波与传输介质间的相互作用。基本粒子(被认为是物質波)即使在没有集合约束和其他介质存在下也会有非平凡的色散关系。

在存在色散的情况下,波速不再唯一定义,从而产生了相速度群速度的区别。

色散[编辑]

當不同波長的平面波表現出不同的傳播速度時,色散會發生,如此造成混合各種波長的波包漸漸地在空間中擴展開來。平面波的速率v為波長\lambda的函數:

v = v(\lambda) \,

波速、波長、頻率f之間具有恆等式:

v(\lambda) = \lambda\ f(\lambda) \,

函數f(λ)指出了該介質中的色散關係。色散關係更常用角频率\omega=2\pi f波數k=2 \pi /\lambda來表示。上述式子可改寫為

\omega(k)= v(k)\ k \,

在此ω成為k的函數。使用ω(k)來描述色散關係已經成為一種標準寫法,因為相速度 ω/k群速度 ∂ω/∂k 可以輕鬆地從這樣寫法的色散關係中求得。

因此所關注的平面波可寫為如下數學式:

A(x, t) = A_0e^{2 \pi i \frac{x - v t}{\lambda}}= A_0e^{i (k x - \omega t)}

其中

A是波的振幅
A0 = A(0,0),
x是波傳遞方向上的任一特定位置,以及
t是描述波的任一特定時間。

真空中的平面波[编辑]

真空中的平面波是波傳遞最簡單的例子:無幾何上的限制,無傳導介質的交互作用。

電磁波[编辑]

對真空中的电磁波而言,角頻率與波數呈正比:

\omega = c k\,

這是「線性」的色散關係。在此情形下,相速度與群速度乃是相同的:

 v = \frac{\omega}{k} = \frac{d\omega}{d k} = c

兩者皆為c,真空中的光速,為與頻率無關的常數。

德布羅意色散關係[编辑]

自由空間中,日常生活常見物體其動能動量之間的色散關係圖。

粒子的總能量動量質量透過如下相對論關係連結:

E^2 = (mc^2)^2+(pc)^2\,  [1]

其中m靜質量

當靜質量m為零時,比如光子的例子:

 E = p c\,

又靜質量不為零的粒子,當其接近光速時,pc項遠大於mc2項,因此關係式可趨近於E = pc。其在非相對論極限,也就是速度遠小於光速c的情形,可趨近於如下關係式:

E = m c^2 + \frac{p^2}{2m}

此情形下,m c^2是常數,而p^2/2 m是常見的動能,可以動量 p = m v來寫出關係式。

從近光速的例子過渡到低速度極限,可看到Ep的關係是從p轉成p2,在垂直軸跟水平軸皆取對數log的色散關係圖中可看出斜率的改變。

基本粒子、原子核、原子,甚至是分子,皆有物質波的波動表現。根據描述物質波的「德布羅意關係」,能量E與角頻率ω之間以及動量p與波數k之間皆為正比關係,比值為約化普朗克常數ħ:

E=\hbar\omega,\quad p=\hbar k

相應地,角頻率與波數之間也可透過色散關係連結。在非相對論極限(低速度極限的牛頓力學)條件下,利用能量(動能)與動量的關係式:

E= \frac{p^2}{2m}

此處省去常數mc2的效應。等式左右分別代入德布羅意關係,可得色散關係:

\omega=\frac{\hbar k^2}{2m}

頻率與波數的關係[编辑]

當討論到介質的折射性質而不是吸收性質,亦即關注焦點為折射率實部,則常會提及「色散關係」—角頻率與波數的函數關係。在粒子的情形,改由相對應的能量與動量的函數關係來描述。

波動與光學[编辑]

「色散關係」一詞源自於光學。讓光穿過折射率不為常數的介質則有辦法使得光速與波長相依;另外的方法是使用非均勻介質中的光,比如波导。在此情形下,波形會隨著時間擴展開來,窄脈衝波會變成較寬的脈衝波。在這些材料中,\frac{\partial \omega}{\partial k}群速度[2],對應到脈衝包絡線峰值的傳遞速度,並與相速度\frac{\omega}{k}不同。[3]

深水波[编辑]

深水的表面重力波的頻率色散。紅點以相速度移動,而綠點以群速度移動。在深水的情形,相速度為群速度兩倍。一同出發的紅、綠點,當紅點走完圖片寬度的全程時,綠點方走一半。

水波的色散關係常寫為

\omega = \sqrt{g k}

其中g重力造成的加速度。深水的常見定義為水深大於波長之半[4]。在此情形下,相速度為

v_p = \frac{\omega}{k} = \sqrt{\frac{g}{k}}

而群速度為

v_g = \frac{d{\omega}}{dk} = \frac{1}{2} v_p.

弦波[编辑]

非色散橫波的雙頻率拍頻。既然此波為非色散,則相速度(紅點行進速度)等於群速度(綠點行進速度)。

對一條理想弦而言,色散關係可寫為

\omega = k \sqrt{\frac{T}{\mu}}

其中T為弦的張力μ為弦每單位長度的質量。

如同真空中的電磁波,理想弦為非色散介質,其相速度與群速度相等,並且與振動頻率無關。

至於非理想弦則需考量到硬度的影響,色散關係變為

\omega^{2} = \frac{T}{\mu}k^{2} + \alpha k^{4}

其中\alpha是與弦有關的常數。

固態物理[编辑]

固態物理領域,電子的色散關係佔有重要的角色。晶體的週期性意味著:對一給定的動量存在有多種可能的能階,而有些則是不論什麼樣的動量都不可能會具有的能量。所有可能的能量與動量的組合即為一物質的能带结构。能帶結構的性質定義了一物質是絕緣體半导体,抑或是導體

聲子[编辑]

聲子之於聲波一如光子之於光波:其為攜帶波動能量的量子。聲子的色散關係也是重要且非平凡的。許多系統都顯示出聲子存在於兩個分離的能帶。聲子尚可分為光學聲子支與聲學聲子支。

電子顯微術[编辑]

關於穿透式電子顯微鏡中的高能電子(例如200 keV),收斂束電子繞射(Convergent beam electron diffraction, CBED) 型態在高階勞厄區英语Laue zone(higher order Laue zone, HOLZ)譜線的能量相依性,允許研究者能對晶體三維色散表面的橫斷面做直接「成像」[5]。這種動態效應英语Dynamical theory of diffraction可用於晶格參數的準確測量、電子束能量,近期更應用在電子業上。

歷史[编辑]

艾萨克·牛顿研究過稜鏡的折射現象。然而牛頓卻沒有認出色散關係與不同材料的相關性;假使有認出,他則可能發明出消色差透鏡[6]

水波的色散關係是由皮埃尔-西蒙·拉普拉斯於1776年研究得到。[7]

在幾篇舉足輕重的論文中,色散關係與各種波及粒子散射理論英语Scattering theory中的因果律被連繫了起來,使得克拉莫-克若尼關係式(1926年-1927年間)的通則變得重要。[8]

参见[编辑]

参考文献[编辑]

  1. ^ Taylor. Classical Mechanics. University Science Books. : 652. ISBN 1-891389-22-X. 
  2. ^ F. A. Jenkins and H. E. White. Fundamentals of optics. New York: McGraw-Hill. 1957: 223. ISBN 0-07-032330-5. 
  3. ^ R. A. Serway, C. J. Moses and C. A. Moyer. Modern Physics. Philadelphia: Saunders. 1989: 118. ISBN 0-534-49340-8. 
  4. ^ R. G. Dean and R. A. Dalrymple. Water wave mechanics for engineers and scientists. Advanced Series on Ocean Engineering 2. World Scientific, Singapore. 1991. ISBN 978-981-02-0420-4.  See page 64–66.
  5. ^ P. M. Jones, G. M. Rackham and J. W. Steeds. Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination. Proceedings of the Royal Society. 1977,. A 354: 197. 
  6. ^ Westphal, Never at rest cited from memory. Quite a funny anecdote, worth looking up: Newton dismissed reports of refraction indices at variance from his own because the author was a Jesuit.
  7. ^ A.D.D. Craik. The origins of water wave theory. Annual Review of Fluid Mechanics. 2004, 36: 1–28. Bibcode:2004AnRFM..36....1C. doi:10.1146/annurev.fluid.36.050802.122118. 
  8. ^ John S. Toll. Causality and the dispersion relation: Logical foundations. Phys. Rev. 1956, 104 (6): 1760–1770. Bibcode:1956PhRv..104.1760T. doi:10.1103/PhysRev.104.1760. 

外部链接[编辑]