跳转到内容

楔形数

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自楔形數

楔形数指可以表示成三个不同质数的积的正整数。将任何楔形数带入默比乌斯函数,结果都得+-1.

注意以上的定义比要求一个数只含有三个不同的质数因子更严格。比如60 = 22 × 3 × 5只有3个质数因子,但它不是楔形数,又比如44 = 22 × 11,是三個質數的積,但它不是楔形數。

所有的楔形數都是無平方數因數的數

楔形數的平方有27個正因數,立方有64個正因數,依此類推。

所有的楔形数都有刚好8个因数。如果把一个楔形数表示为,这里pqr是不同的质数因子,那么n的约数的集表示为:

最小的一些楔形数为:3042667078102105110114130138154165170174182186190195222230231238246255258266273282285286290、310、318、322、345、354、357、366、370、374、385、399、402、406、410、418、426、429、430、434、435、438 ... (OEIS數列A007304

目前已知最大的楔形数是(282,589,933 − 1)×(277,232,917 − 1)×(274,207,281 − 1),即三个已知最大质数的积。

第一組兩個連續的楔形數是230 = 2×5×23和231 = 3×7×11;第一組三個的是1309 = 7×11×17、1310 = 2×5×131和1311 = 3×19×23。一組三個以上的不存在,因為如果有這一組,則其中一項可以被4 = 2×2整除,因而不是無平方數因數的數

2013(3×11×61)、2014(2×19×53)和2015(5×13×31)都是楔形數。下一組三個連續的楔形數年份是2665(5×13×41)、2666(2×31×43)和2667(3×7×127)(OEIS數列A165936)。

外部链接