跳转到内容

碳循环

维基百科,自由的百科全书
地球于"快速碳循环"中,每年有几吉吨(gigatons,十亿吨)的碳在陆地、大气与海洋之间移动。黄色数字代表自然产生的通量、红色数字代表人类产生的排放,白色数字代表储存的碳。"慢速碳循环"(也称深层碳循环,如火山喷发与板块活动所产生)的碳活动未包括在内。[1]

碳循环(英语:Carbon cycle)是生物地球化学循环中的一支,地球的碳透过此循环在生物圈土壤圈地质圈水圈大气层之间进行交换。其他主要的生物地球化学循环还包括氮循环水循环是生物化合物的主要成分,也是石灰石等许多矿物质的主要成分。碳循环由一连串事件组成,这些事件对于地球能维持生命存在有关键作用。碳循环描述碳在整个生物圈中回收重复使用期间的变动,以及储存及由碳汇释放的漫长过程。

为描述碳循环中的动态,可将之区分为快速循环和慢速循环两种。快速碳循环也称为生物碳循环,这类循环可在几年内完成,由大气转移到生物圈,然后再返回大气。慢速碳循环(即地质循环),也称为深层碳循环英语deep carbon cycle,需花费数百万年才能完成,其间碳穿过地壳,在岩石、土壤、海和大气之间移动。[2]

人类在过去几个世纪中透过改变土地利用,以及从地质圈中以工业化规模开采化石碳(炭、石油天然气,及制造水泥),扰乱快速碳循环的节奏。[1][3]迄2020年,全球大气中的二氧化碳含量比第一次工业革命开始前的平均水平增加近52%,经由太阳辐射强迫作用,导致大气和地球表面温度升高。[4][5]大气中二氧化碳增加后也导致海洋pH值降低,而根本上将海洋化学改变。[6][7]在过去的半个世纪中更有大量的化石碳被开采以及使用,且速率持续快速上升,加剧人为造成的气候变化[8][9]

主要碳库

[编辑]

碳循环的概念首先由法国化学家安托万-罗伦·德·拉瓦节英国化学家约瑟夫·普利斯特里于十九世纪中叶后期提出,随后由英国化学家汉弗里·戴维推广。[10]目前碳循环透过交换路径于以下几个主要碳库(即碳汇)间连接:[11]:5–6

  • 大气层
  • 陆地生物圈
  • 海洋,包括溶解无机碳(DIC),以及溶解有机碳(DOC)
  • 沉积物,包括化石燃料、淡水系统和死亡有机材料。
  • 地球内部(地幔 (地质学)地壳)。存于此处的碳透过地质过程与其他成分相互作用。

碳库之间的碳交换是各种化学、物理、地质和生物过程的结果。海洋是地表最大的活性碳库。[12]碳在大气、海洋、陆地的生态系统和沉积物之间以相当平衡的方式自然流动,在没人类影响的情况下,碳水平将大致维持稳定。[4][13]

大气层

[编辑]
NASA电脑模型显示大气中二氧化碳如何在一年的周期内于全球移动。[14]

大气层中的碳有两种主要形式:二氧化碳和甲烷。这两种气体会吸收来自太阳的热量,并将其保留,是造成温室效应的部分原因。[12]同样单位体积的甲烷会比二氧化碳产生更大的温室效应,但其在大气层中的浓度要低很多,而且寿命更短。二氧化碳因此在全球温室效应的影响比甲烷更大。[15]

大气中的二氧化碳主要会受植物的光合作用移除,然后进入陆地和海洋生物圈。二氧化碳也会直接由大气层溶入水体(海洋、湖泊等)之中,以及溶于雨滴,随降水下降到地表。当二氧化碳溶解与水时,会与水分子反应而形成碳酸,最终导致海洋酸化。它可透过风化作用被岩石吸收,也会因酸化而腐蚀所接触的其他表面,或被冲入海洋。[16]

根据钻取的极地冰芯所测得地球于过去80万年大气中二氧化碳的浓度变化。显示浓度自第一次工业革命后又开始增加,于20世纪时的增长开始加速。

过去两个世纪中的人类活动已导致大气中的碳含量增加近50%(迄2020年,主要以二氧化碳形式存在),不仅是透过改变生态系统从大气中捕集二氧化碳的能力(例如森林砍伐),且又透过增加排放来实现(例如通过燃烧化石燃料和制造水泥)。[5][12]

在遥远的未来(20至30亿年后),因太阳年纪增长而发生的变化(参见太阳系的形成和演化),导致土壤增快透过碳酸盐-硅酸盐循环英语carbonate–silicate cycle吸收二氧化碳。预计届时因太阳光度增加,会加快地表风化的速度,[17]最终将导致大气中的大部分二氧化碳会以碳酸盐的形式被挤压进入地壳。[18][19][20]一旦大气中二氧化碳的浓度降至约百万分之50(50ppm)以下,C3类植物(约占当今地球植物生物质的95%)的C3类二氧化碳固定将不再发生。[19]不同模型的模拟结果有所不同,但一般预计此情况会在6亿年后发生。[21]

一旦海洋中的水分在大约11亿年后蒸发完毕,[17]板块构造移动很可能会因为缺乏水作润滑剂而停止,而因缺乏火山喷出二氧化碳,将导致碳循环在未来10亿至20亿年后结束。[22]

陆地生物圈

[编辑]
储存于陆地上不同生态系统中的碳(单位:吉吨)。[23]

陆地生物圈囊括所有陆地生物(无论是活的或是死的)中的有机碳,以及储存于土壤中的碳。大约有500吉吨(Gt,十亿吨)的碳储存在地面上的植物和其他生物体中,[4]而土壤中约存有1,500吉吨的碳。[24]陆地生物圈中的大部分碳是有机碳,[25]而大约三分之一的土壤碳以无机形式存在(例如碳酸钙)。[26]有机碳是地球上所有生物的主要成分。自营生物以二氧化碳的形式从空气中捕集碳,将其转化为有机碳,而异营生物则透过摄取其他生物体来获取。

由于陆地生物圈吸收碳的方式取决于生物因素,因此会循昼夜和季节循环而进行。在测量二氧化碳之时,此一特征可由基林曲线清楚显现。此情况在北半球最强,因为北半球比南半球有更多的陆地面积,导致有更大的空间供生态系统吸收和排放碳。

手提式装置,用于测量土壤的二氧化碳排放通量。

碳以多种方式和不同的时间尺度离开陆地生物圈。透过燃烧或是呼吸会将有机碳迅速释放到大气中。它也透过河流携带进入海洋或以惰性碳的形式保留在土壤中。[27]储存在土壤中的碳可保留数千年,然后经侵蚀作用受冲刷进入河流,或透过土壤呼吸释放进入大气。于1989年至2008年期间,土壤呼吸作用每年增加的速率约为0.1%。[28]于2008年,全球土壤呼吸释放的二氧化碳总量约为980亿吨,[29]大约是人类现在每年透过燃烧化石燃料,排放到大气中碳量的3倍。{{cite web name=”World Agriculture”/>对于这种趋势有一些合理的解释,其中最可能的是气温升高,而加速土壤有机质的分解速度,继而增加二氧化碳的流量。土壤中储存碳的时间长度取决于当地的气候条件以及气候变化过程中的变化。[30]

在地球上的主要碳库。[12]
碳库 数量 (gigatons/十亿吨)
大气 720
海洋 (总共) 38,400
总无机碳 37,400
总有机碳 1,000
表面层 670
深层 36,730
岩石圈
沉积碳酸盐 > 60,000,000
油母质 15,000,000
陆地生物圈 (总共) 2,000
活的生物质 600 - 1,000
死的生物质 1,200
水生生物圈 1 - 2
化石燃料 (总共) 4,130
煤炭 3,510
石油 230
天然气 140
其他 (泥炭) 250

海洋

[编辑]

海洋在概念上可分为表面层(其中水与大气频繁接触(从每天到每年)),与深层(低于典型混合层的深度,达到几百米或更小),此层与表面层接触的时间间隔可能是几个世纪。表面层中的溶解无机碳(dissolved inorganic carbon,DIC)与大气快速交换,维持平衡。深层中含有更多的碳,部分原因是其DIC浓度较表面层高出约15%,[31]但主要是由于深层体积较大,是世界上最大的主动循环碳库,其中碳含量是大气的50倍,[12]但与大气达到平衡的时间尺度需要数百年(经由温盐环流驱动,两海水层之间的碳交换很慢)。[12]

碳主经由大气中二氧化碳溶解而进入海洋,其中一小部分转化为碳酸盐。它也可以溶解有机碳(DOC)形式通过河流进入海洋。碳透过光合作用被生物体转化为有机碳,且可在整个食物链中交换,或者以死亡软组织的形式沉淀到海洋更深、更富含碳的海水层中,或者以碳酸钙的形式成为贝类的壳。碳会在此海水层中循环很长一段时间,然后成为沉积物,或是最终通过温盐循环返回表面层水域。[4]

海水呈碱性(目前pH值为8.1至8.2)。大气中二氧化碳增加后,会导致海水的pH值趋向中性变动,此过程称为海洋酸化。海洋吸收二氧化碳是碳截存作用最重要的形式之一。预计海水pH值降低的程度会降低海洋生物碳酸钙沉淀,也会把海洋吸收二氧化碳的能力降低。[32][33]

地质圈

[编辑]
显示地球迄2014年不同碳库储存碳量(单位:吉吨)的图表,土地利用变化与燃烧化石燃料的累积排放也被列入,以供比较。[23]

碳循环的地质部分与全球碳循环的其他部分相比,运作缓慢。此为大气中碳含量以及全球气温最重要的决定因素之一。[34]

地球上大部分的碳以惰性方式储存在地球的岩石圈中。[12]在地幔中大部分的碳是在地球形成时即已存在。[35]而有一些是以有机碳的形式从生物圈沉积而来。[36]地质圈中储存的碳中约80%是存于石灰石及其衍生物中,是由储存在海洋生物壳中的碳酸钙沉积形成。剩下的20%以油母质的形式存在,这些油母质是陆地生物质经过高温与高压的沉积和埋藏而形成。储存在地质圈中的有机碳可保留数百万年。[34]

碳可透过多种方式离开地质圈。当碳酸盐岩隐没到地幔中时,会在变质作用过程中释放二氧化碳。这些二氧化碳可透过火山喷发和热点而释放进入大气和海洋。[35]人类也可透过直接开采化石燃料,利用燃烧以释放能量,并将其储存的碳排放进入大气。

动力学类型

[编辑]
显示慢速碳循环(深层碳循环)的绘图,显示碳如何在岩石中移动。

碳循环有快有慢。快速循环在生物圈中运行,慢速循环在岩石中运行。快速循环可在几年内完成,将碳从大气转移到生物圈,然后返回大气。慢速循环会延伸到地幔深处,可能需要数百万年才会完成,碳会穿过地壳,在岩石、土壤、海和大气之间移动。[2]

快速循环涉及环境和生物圈中的生物体之间相对短期的生物地球化学过程(参见文章开头的图表)。包括大气与陆地和海洋生态系统以及土壤和海底沉积物之间的碳移动。快速循环包括涉及光合作用的年度循环以及涉及营养生长和分解的代际循环。快速循环对人类活动的反应将决定气候变化所产生的许多更直接的影响。[37][38][39][40][41]

慢速(或是深层)碳循环涉及属于岩石循环的中长期地球化学过程(参见附图)。海洋和大气之间的交换需要几个世纪,岩石的风化需要数百万年。海洋中的碳沉淀到海底,形成沉积岩并隐没到地幔中。造山过程导致地质碳返回地表,同时岩石受到风化,碳透过脱气英语degassing返回大气,也透过河流携带进入海洋。其他地质碳则透过钙离子的热液系统排放返回海洋。在任何一年中皆会有1千万至1亿吨碳沿着这个缓慢的循环移动,也包括火山将地质碳以二氧化碳的形式直接送回大气。然而这些二氧化碳的数量还不到燃烧化石燃料排放到大气中的百分之一。[2][37][42]

快速碳循环中的子过程

[编辑]

水循环中的陆地碳

[编辑]
河流可将土地上的碳移往各处。[43]}}

陆地碳在水循环中的移动如右图所示,解释如下:[43]

  1. 大气中悬浮微粒担任云凝结核,促进云形成。[44][45]
  2. 雨滴于降落途中,透过颗粒和有机蒸气吸附作用,吸收有机和无机碳。[46][47]
  3. 燃烧和火山爆发产生高度浓缩的多环芳香化合物分子(即黑碳),并与二氧化碳等温室气体一起进入大气。[48][49]
  4. 陆地植物透过光合作用将大气中的二氧化碳固定,并透过呼吸作用将一小部分返还大气。[50]木质素纤维素占森林中有机碳中的80%,和牧场有机碳中的60%。[51][52]
  5. 植物凋落物和根系有机碳与沉积物混合形成有机土壤,其中植物来源的有机碳和石化有机碳透过微生物和真菌活动而被储存与转化。[53][54][55]
  6. 当雨水穿过森林冠层(即树冠穿透雨英语throughfall)和沿着植物树干/茎流下(即树干流英语stemflow)时,会吸收植物和沈降的气溶胶衍生的溶解有机碳(DOC)和溶解无机碳(DIC)。[56]当水渗入土壤溶液和地下储层时会发生生物地球化学转变,[57][58]当土壤中水分完全饱和后,[59]或降雨的速率快过土壤饱和的速度,[60]就会形成地表径流
  7. 来自陆地生物圈和原位初级生产的有机碳被河流和溪流中的微生物群落分解以及物理分解(即光降解),导致从河流排放到大气中的二氧化碳通量与陆地生物圈每年固存的碳量相似。[61][62][63]木质素[64]和黑碳[65]等陆地来源的大分子被分解成较小的成分和单体,最终转化为二氧化碳、代谢中间体或生物质。
  8. 湖泊、水库和洪氾区通常储存大量有机碳和沉积物,但在水体中也经历净异营作用,导致进入大气的二氧化碳净通量大约比河流的少一个数量级。[66][63]洪氾区、湖泊和水库中缺氧水体沉积物中的甲烷产量通常也很高。[67]
  9. 由于河流作用会输出营养,河流羽流英语river plumer中的初级生产通常因而得到增强。[68][69]导致河口水域成为全球大气中二氧化碳的来源。[70]
  10. 潮汐沼泽英语tidal marsh既储存又输出蓝碳英语blue carbon[71][72][73]估计全球草泽湿地向大气排放的二氧化碳通量与河流相当。[74]
  11. 大陆棚和开放海域通常会吸收大气中的二氧化碳。[70]
  12. 海洋生物泵吸收一小部分的二氧化碳(但很重要的一部分),形成存于海洋沉积物英语marine sediment中的有机碳(见下文)。[75][43]

流入海洋的地表径流

[编辑]
碳如何被河流携带进入海洋
河流将植物等有机碳与无机碳携带进入海洋,及河流系统产生的碳排放进入大气后,经二氧化碳交换而进入海洋等综合因素所导致。[76]

陆地和海洋生态系统主要透过河流运输而连结,河流是陆地侵蚀性物质进入海洋系统的主要通道。陆地生物圈和岩石圈之间的物质和能量交换,以及有机碳固定与氧化过程,共同调节生态系统中的碳和氧气库。[76]

河流运输是这些碳库的主要连结通道,发挥将净初级生产(主要为溶解有机碳(DOC)和颗粒有机碳英语Particulate organic matter(POC)的形式)从陆地系统运输到海洋系统的作用。[77]在运输过程中,部分DOC会透过氧化还原反应迅速返回大气,导致陆地-大气储存层之间发生"碳脱气"。[78][79]剩余的DOC和溶解的无机碳(DIC)被携带进入海洋。[80][81][82]估计于2015年,全球河流的无机和有机碳输出通量分别为0.50-0.70十亿吨(Pg)碳/年和0.15-0.35十亿吨碳/年。[81]另一方面,POC可埋藏在沉积物中很长时间,全球每年由陆地输送到海洋的POC通量估计为0.20千吨(Gg)/年。[83][76]

海洋生物泵

[编辑]
发生于开阔海洋中的碳循环

海洋生物泵是由海洋生物从大气和陆地径流捕集碳,然后移往深海内部和海底沉积物的过程。[84]生物泵并非一种单一过程,而是多个过程的总和,每个过程都会影响生物泵的结果。此种泵作用每年将约110亿吨碳转移到海洋内部。如果海洋中无生物泵作用,会导致大气中的二氧化碳浓度比现在高出约400ppm。[85][86][87]

有机和无机材料中的大部分碳是在海面形成,然后开始沉入海底。当这些物质由较高的海水水柱英语Water column海雪的形式下沉时,深海由此获取大部分营养。这些物质由死亡或垂死的动物和微生物、动物粪便、沙粒和其他无机材料组成。[88]

生物泵将溶解的无机碳(DIC)转化为有机生物质,并将其以颗粒或溶解形式泵入深海。浮游植物利用光合作用将无机养分和二氧化碳固定,同时释放溶解有机物 (DOM),而被草食性浮游动物摄取。较大的浮游动物,例如桡足纲动物,排出粪便颗粒,可被重新摄入,或与其他有机碎屑一起下沉或聚集成更大、下沉更快的聚集体。 DOM部分被细菌消耗并释放气体,剩余的难分解部分被海水携带,混入深海中。被携带到深海中的DOM和聚集体被消耗和释放气体,将有机碳返回到巨大的深海DIC库中。[89]

单一浮游植物细胞的下沉速度约为每天一米。鉴于海洋的平均深度约为四公里,这些细胞可能需要十年以上才能到达海底。然而透过捕食者粪便颗粒的凝固和排出等过程,而形成聚集体,其下沉速度比单一细胞大几个数量级,并在几天内抵达深处。[90]

由海洋表面下降的颗粒中大约有1%会到达海底并被消耗、释放气体或埋在沉积物中。这些过程最终是从表面去除有机形式的碳,并将其返回到更深的DIC,维持一个由海洋表面到深海的DIC梯度。温盐环流以千年的时间尺度将深海DIC送返大气。埋藏在沉积物中的碳可隐没进入地幔并储存数百万年,形成一种缓慢碳循环中的形式(见下一节)。[89]

慢速碳循环内的子过程

[编辑]
海底地球板块移动,将碳移入地幔中

慢速或深层碳循环为一重要过程,但它不像经由大气、陆地生物圈、海洋和地质圈的相对快速碳循环那样被充分理解。[91]深层碳循环与地球表面和大气中的碳循环密切相关。如果没此过程,碳将保留在大气中,并在很长一段时间内累积到极高的浓度。[92]深层碳循环让碳返回地球的作用,在维持陆地适合生命存在所需的条件方面具有有关键作用。

此外,因为地球于此作用中可储存大量的碳,过程本身就很重要。研究玄武岩岩浆的成分并测量火山中的二氧化碳通量显示地幔中的碳含量实际上比地球表面的多一千倍。[93]钻探和物理观测地球深部碳过程显然极为困难,因为下地幔和地核的深度分别为660公里至2,891公里和2,891公里至6,371公里。而导致人们对碳在地球深处的作用尚无太多确切的了解。虽然如此,一些证据(其中许多由模拟地球深处条件而取得)已显示元素向下移动到下地幔的机制,以及碳在该层的极端温度和压力下所具有的形式。此外,透过地震学等技术已让我们对地核中碳的或有存在有更深入了解。

下地幔中的碳

[编辑]
可产生碳释放(二氧化碳排放)的几个途径[94]

碳主要是透过富含碳酸盐沉积物,经由海洋底层的板块边缘,在持续隐没过程中被拉入地幔。我们目前对地幔中的碳循环知之甚少,尤其是在地球深处,但许多研究可增强我们对其中元素运动和形式的理解。例如于2011年所做的一项研究,显示碳循环一直延伸到下地幔。该研究对巴西茹伊纳超深处挖掘而得的稀有钻石进行研究,确定其中一些钻石内含物整体成分与较低地幔内温度和压力下玄武岩熔化和结晶的估计结果相匹配。[95]调查结果表明海洋岩石圈玄武岩是将碳向地球深处传输的主要机制。这些隐没的碳酸盐可与下地幔中硅酸盐相互作用,最终形成像挖掘而得的这批超深钻石。[96]

但进入下地幔的碳酸盐除会形成钻石之外,还会形成其他的物质。有项于2011年进行的实验,将碳酸盐岩置于与下地幔类似的深达1,800公里处,而形成菱镁矿菱铁矿和多种石墨[97]其他实验以及岩石学观察也支持此一说法,显示菱镁矿实际上是地幔中大部分地区中最稳定的碳酸盐相,主要是由于其可忍受较高的熔化温度。[98]科学家们得到的结论是碳酸盐在下降到地幔时会发生氧化还原反应,然后在低氧逸度环境下在深处稳定下来。镁、铁和其他金属化合物在整个过程中充当缓冲剂。[99]如碳(如石墨)的还原元素形式,其存在显示碳化合物在进入地幔时被还原。

碳原子与氧原子结合成为四面体形分子构型

同质异形体现象改变碳酸盐化合物在地球不同深度的稳定性。为说明这一点,实验室模拟和密度泛函理论计算显示四面体形分子构型碳酸盐在接近核函边界的深度最为稳定。[100][97]于2015年所做的一项研究显示下地幔的高压导致碳键从sp2混成轨域转变为sp3混成轨域,导致碳与氧以四面体形分子构型键合。[101]CO3三角形团(也称三角形碳酸盐团)不能形成可聚合网络,而四面体CO可以,表示碳配位数增加,而下地幔中碳酸盐化合物的性质也因而发生巨大变化。例如,初步理论研究显示高压会导致碳酸盐熔体黏度增加,之后熔体的流动性较低,导致大量碳沉积到地幔深处。[102]

碳因而可在下地幔中保留很长一段时间,但大量的碳经常会返回岩石圈。这个过程被称为碳释气,是碳化地幔经历减压熔融以及地幔羽流携带碳化合物向上到达地壳的结果。[103]碳在上升到火山热点时受到氧化,然后以二氧化碳的形式释放。发生这种情况是为让碳原子的氧化态与在这些地区喷发的玄武岩的氧化态相匹配。[104]

透过分析s波通过的速度可推断地核中可能有碳的存在。

地核中的碳

[编辑]

虽然地核中碳的存在受到很大的限制,但最近的研究显示该区域可储存大量的碳。透过s波地震测试,s波通过的速度仅为通过多数富铁合金所需的一半。[105]由于核心的成分以往被认为是结晶铁和少量镍的合金,因此这种地震结果异常现象显示地核中存在包括碳在内的轻元素。事实上,使用金刚石压砧复制地核高压条件的研究显示雪明碳铁 (Fe7C3) 与内核的波速和密度相符。因此这种实验模型可作为地核含有多达地球碳67%的证据。[106]而在另一项研究中发现在地球内核的压力和温度条件下,有碳溶解在铁中,并形成具有与Fe7C3相同成分的稳定相,但结构与前面提到的不同。[107]总之,虽然地核中潜在储存的碳量尚不清楚,但最近的研究显示雪明碳铁的存在可解释一些地球物理观测结果。

人类对快速碳循环的影响

[编辑]
二氧化碳排放与分类
各种二氧化碳来源竞相增加排放(资料来源:全球碳计划)
大部分的二氧化碳排放由不同的碳库 - 植物、土壤与海洋所捕集(资料来源:全球碳计划从事的全球碳预算研究活动(Global Carbon Budget))
图表,显示人类活动于2010年至2019年期间造成的平均碳排放,对于全球碳循环造成的扰动。

自第一次工业革命以来,特别是在第二次世界大战结束后,人类活动将地质圈中大量的碳重新分配,严重扰乱全球碳循环。[1]人类也因改变植被和其他土地利用,不断改变陆地生物圈的自然功能。[12]并透过涉及与大量制造人造(合成)碳化合物,然后以污染物的形式在空气、水和沉积物中存在,持续数十年至数千年。[108][109]由于各种正回馈和负回馈,造成的气候变化正加剧并迫使人类进一步间接改变碳循环。[110][109]

气候变化

[编辑]
气候–碳循环回馈与状态变量
简式图形表达
[111]

当前的气候变化导致海洋温度与酸度升高,将海洋生态系统改变。[112]此外,酸雨和农业和工业所产生的污染,经过径流携带入海,也将海洋的化学成分改变。这种变化会对珊瑚礁等具高敏感度的生态系统产生巨大影响,[113]而限制海洋在区域范围内由大气吸收碳的能力,并减少全球海洋生物多样性

大气与地球系统其他组成部分之间的碳交换,统称为碳循环,人为碳排放对气候变化的影响构成重要的负(抑制)回馈。目前陆地和海洋每年各可捕集人为碳排放量的四分之一。[114][111]

预计这些回馈能力在未来会减弱,而放大人为碳排放对气候变化的影响。[115]但回馈能力减弱的程度是高度不确定,即使在相同的大气浓度或排放情况下,地球系统模型所预测的陆地和海洋的碳吸收有很大的差异。[116][111][117]人为气候变化间接引起的北极甲烷排放也会影响碳循环并导致进一步暖化。

化石碳开采与燃烧

[编辑]
于1850年至2018年期间,人为产生的二氧化碳,与各碳库捕集数量(吉吨)累计(图左部分),于2009年至2018年期间全球平均每年平均排放量(图右部分)。斜虚线部分为不确定值,红色部分为根据资料加总后失衡的部分。最大的排放源为开采与燃烧石化燃料,其次为土地利用改变。 [3]

人类对碳循环和生物圈最大且成长最快的影响之一是开采与燃烧化石燃料,直接将碳从地质圈转移到大气中。在生产水泥的前体 - 熟料时需煅烧石灰石,过程中也会释放大量二氧化碳。[118]

截至2020年,全球总共已开采约450亿吨化石碳,接近地球上所有陆地生物量中所含碳的数量。[3]全球最近直接排放到大气中的碳数量已超过植被和海洋的吸收能力。[119][120][121][122]预计且观察到这些碳库将在约一个世纪内只能将新增大气碳中的一半移除。[3][123][124]但像海洋这样的碳库具有不断变化的饱和特性,且预计新增的碳的很大部分(20-35%,根据耦合气候模式比对专案英语Coupled model intercomparison project模拟结果)会在大气中保留几个世纪到几千年。[125][126]

有机卤化物

[编辑]

有机卤化物是为多种工业用途而开发且产量较低的化合物,通常用于溶剂冷媒。虽然其中如氯氟碳化合物(CFCs)、氢氟碳化合物(HFCs)和碳氟化合物(PFCs)气体于大气中的浓度较低(仅兆分之几),效果却约占所有长寿温室气体总直接辐射强迫的10%(2019年)。[127]氯氟碳化合物也会导致平流层中臭氧耗损英语Ozone depletion。国际社会正根据《蒙特利尔议定书》和《京都议定书》持续努力控制这些对环境有害的气体的制造和使用。目前已开发出,并逐步引入更良性的替代品(例如氢氟烯碳化合物(HFO))。[128]

土地利用变化

[编辑]

自人类开始进行农业活动以来,已改变陆地生物圈中的植被组合,在长达一个世纪的时间尺度上直接并逐渐影响碳循环。[123]在过去的几个世纪中,直接和间接由人类引起的土地利用和土地覆盖变化(LUCC)导致生物多样性丧失,降低生态系统对环境压力的韧性,并降低其从大气中移除碳的能力,即经常导致陆地生态系中的碳释放进入大气。

出于农业目的而砍伐森林,等于移除含有大量碳的碳库,开辟出来的土地除用于农业外,也用以建立城市。农地与城市所能储存的碳量相对较少,最终的结果是有更多的碳留在大气中。但此类对大气和整体碳循环的影响可透过林地复育来改善。

参见

[编辑]

参考文献

[编辑]
  1. ^ 1.0 1.1 1.2 Riebeek, Holli. The Carbon Cycle. Earth Observatory. NASA. 2011-06-16 [2018-04-05]. (原始内容存档于2016-03-05). 
  2. ^ 2.0 2.1 2.2 Libes, Susan M. (2015). Blue planet: The role of the oceans in nutrient cycling, maintain the atmosphere system, and modulating climate change 互联网档案馆存档,存档日期2023-01-08. In: Routledge Handbook of Ocean Resources and Management, Routledge, pages 89–107. ISBN 9781136294822.
  3. ^ 3.0 3.1 3.2 3.3 Friedlingstein, P., Jones, M., O'Sullivan, M., Andrew, R., Hauck, J., Peters, G., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C. and 66 others (2019) "Global carbon budget 2019". Earth System Science Data, 11(4): 1783–1838. doi:10.5194/essd-11-1783-2019. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License 互联网档案馆存档,存档日期2017-10-16..
  4. ^ 4.0 4.1 4.2 4.3 Prentice, I.C. The carbon cycle and atmospheric carbon dioxide. Houghton, J.T. (编). Climate change 2001: the scientific basis: contribution of Working Group I to the Third Assessment Report of the Intergouvernmental Panel on Climate Change. 2001. hdl:10067/381670151162165141. 
  5. ^ 5.0 5.1 The NOAA Annual Greenhouse Gas Index (AGGI) - An Introduction. NOAA Global Monitoring Laboratory/Earth System Research Laboratories. [2020-10-30]. (原始内容存档于2020-11-27). 
  6. ^ What is Ocean Acidification?. National Ocean Service, National Oceanic and Atmospheric Administration. [2020-10-30]. (原始内容存档于2024-02-23). 
  7. ^ Report of the Ocean Acidification and Oxygen Working Group, SCOR Biological Observatories Workshop (PDF). scor-int.org/. International Council for Science's Scientific Committee on Ocean Research (SCOR). 2009-09-30. (原始内容存档 (PDF)于2011-07-15). 
  8. ^ Heede, R. Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010. Climatic Change. 2014, 122 (1–2): 229–241. Bibcode:2014ClCh..122..229H. doi:10.1007/s10584-013-0986-y可免费查阅. 
  9. ^ Ritchie, Hannah; Roser, Max. CO₂ and Greenhouse Gas Emissions: CO₂ Emissions by Fuel. Our World in Data (Published online at OurWorldInData.org.). 2020 [2020-10-30]. (原始内容存档于2020-11-03). 
  10. ^ Holmes, Richard (2008). "The Age Of Wonder", Pantheon Books. ISBN 978-0-375-42222-5.
  11. ^ Archer, David. The global carbon cycle. Princeton: Princeton University Press. 2010. ISBN 9781400837076. 
  12. ^ 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 Falkowski, P.; Scholes, R. J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; MacKenzie, F. T.; Moore, III, B.; Pedersen, T.; Rosenthal, Y.; Seitzinger, S.; Smetacek, V.; Steffen, W. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science. 2000, 290 (5490): 291–296. Bibcode:2000Sci...290..291F. PMID 11030643. doi:10.1126/science.290.5490.291. 
  13. ^ An Introduction to the Global Carbon Cycle (PDF). University of New Hampshire. 2009 [2016-02-06]. (原始内容存档 (PDF)于2016-10-08). 
  14. ^ A Year In The Life Of Earth's CO2 互联网档案馆存档,存档日期2021-12-26. NASA: Goddard Space Flight Center, 2014-11-17.
  15. ^ Forster, P.; Ramawamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; Nganga, J.; Prinn, R.; Raga, G.; Schulz, M.; Van Dorland, R. Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007. 
  16. ^ Many Planets, One Earth // Section 4: Carbon Cycling and Earth's Climate. Many Planets, One Earth. [2012-06-24]. (原始内容存档于2012-04-17). 
  17. ^ 17.0 17.1 O'Malley-James, Jack T.; Greaves, Jane S.; Raven, John A.; Cockell, Charles S. Swansong Biospheres: Refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. International Journal of Astrobiology. 2012, 12 (2): 99–112. Bibcode:2013IJAsB..12...99O. S2CID 73722450. arXiv:1210.5721可免费查阅. doi:10.1017/S147355041200047X. 
  18. ^ Walker, James C. G.; Hays, P. B.; Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research. 1981, 86 (C10): 9776. Bibcode:1981JGR....86.9776W. ISSN 0148-0227. doi:10.1029/JC086iC10p09776 (英语). 
  19. ^ 19.0 19.1 Heath, Martin J.; Doyle, Laurance R. Circumstellar Habitable Zones to Ecodynamic Domains: A Preliminary Review and Suggested Future Directions. 2009-12-13. arXiv:0912.2482可免费查阅 [astro-ph.EP]. 
  20. ^ Crockford, Peter W.; Bar On, Yinon M.; Ward, Luce M.; Milo, Ron; Halevy, Itay. The geologic history of primary productivity. Current Biology. November 2023, 33 (21): 4741–4750.e5 [2024-01-28]. doi:10.1016/j.cub.2023.09.040. (原始内容存档于2024-01-12) (英语). 
  21. ^ Lenton, Timothy M.; von Bloh, Werner. Biotic feedback extends the life span of the biosphere. Geophysical Research Letters. 2001-05-01, 28 (9): 1715–1718. Bibcode:2001GeoRL..28.1715L. doi:10.1029/2000GL012198可免费查阅 (英语). 
  22. ^ Brownlee, Donald E. Planetary habitability on astronomical time scales. Schrijver, Carolus J.; Siscoe, George L. (编). Heliophysics: Evolving Solar Activity and the Climates of Space and Earth. Cambridge University Press. 2010: 94. ISBN 978-0-521-11294-9. 
  23. ^ 23.0 23.1 Janowiak, M.; Connelly, W.J.; Dante-Wood, K.; et al. Considering Forest and Grassland Carbon in Land Management. General Technical Report (United States Department of Agriculture, Forest Service). 2017: 1–68. doi:10.2737/WO-GTR-95可免费查阅. 
  24. ^ Rice, Charles W. Storing carbon in soil: Why and how?. Geotimes. January 2002, 47 (1): 14–17 [2018-04-05]. (原始内容存档于2018-04-05). 
  25. ^ Yousaf, Balal; Liu, Guijian; Wang, Ruwei; Abbas, Qumber; Imtiaz, Muhammad; Liu, Ruijia. Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach. GCB Bioenergy. 2016, 9 (6): 1085–1099. doi:10.1111/gcbb.12401可免费查阅. 
  26. ^ Lal, Rattan. Sequestration of atmospheric CO2 in global carbon pools. Energy and Environmental Science. 2008, 1: 86–100. doi:10.1039/b809492f. 
  27. ^ Li, Mingxu; Peng, Changhui; Wang, Meng; Xue, Wei; Zhang, Kerou; Wang, Kefeng; Shi, Guohua; Zhu, Qiuan. The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecological Indicators. 2017, 80: 40–51. doi:10.1016/j.ecolind.2017.04.049. 
  28. ^ Bond-Lamberty, Ben; Thomson, Allison. Temperature-associated increases in the global soil respiration record. Nature. 2010, 464 (7288): 579–582. Bibcode:2010Natur.464..579B. PMID 20336143. S2CID 4412623. doi:10.1038/nature08930. 
  29. ^ Template:Cite web name=”World Agriculture”
  30. ^ Varney, Rebecca M.; Chadburn, Sarah E.; Friedlingstein, Pierre; Burke, Eleanor J.; Koven, Charles D.; Hugelius, Gustaf; Cox, Peter M. A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nature Communications. 2020-11-02, 11 (1): 5544. Bibcode:2020NatCo..11.5544V. ISSN 2041-1723. PMC 7608627可免费查阅. PMID 33139706. doi:10.1038/s41467-020-19208-8 (英语). 
  31. ^ Sarmiento, J.L.; Gruber, N. Ocean Biogeochemical Dynamics. Princeton University Press, Princeton, New Jersey, US. 2006. 
  32. ^ Kleypas, J. A.; Buddemeier, R. W.; Archer, D.; Gattuso, J. P.; Langdon, C.; Opdyke, B. N. Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs. Science. 1999, 284 (5411): 118–120. Bibcode:1999Sci...284..118K. PMID 10102806. doi:10.1126/science.284.5411.118. 
  33. ^ Langdon, C.; Takahashi, T.; Sweeney, C.; Chipman, D.; Goddard, J.; Marubini, F.; Aceves, H.; Barnett, H.; Atkinson, M. J. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles. 2000, 14 (2): 639. Bibcode:2000GBioC..14..639L. S2CID 128987509. doi:10.1029/1999GB001195可免费查阅. 
  34. ^ 34.0 34.1 The Slow Carbon Cycle. NASA. 2011-06-16 [2012-06-24]. (原始内容存档于2012-06-16). 
  35. ^ 35.0 35.1 The Carbon Cycle and Earth's Climate 互联网档案馆存档,存档日期2003-06-23. Information sheet for Columbia University Summer Session 2012 Earth and Environmental Sciences Introduction to Earth Sciences I
  36. ^ Berner, Robert A. A New Look at the Long-term Carbon Cycle (PDF). GSA Today. November 1999, 9 (11): 1–6. (原始内容存档 (PDF)于2019-02-13). 
  37. ^ 37.0 37.1 Bush, Martin J. The Carbon Cycle. Climate Change and Renewable Energy. 2020: 109–141 [2024-01-28]. ISBN 978-3-030-15423-3. S2CID 210305910. doi:10.1007/978-3-030-15424-0_3. (原始内容存档于2024-02-14). 
  38. ^ NASA Earth Observatory ( 2011-06-16). "The Fast Carbon Cycle". Archive页面存档备份,存于互联网档案馆). 公有领域 本文含有此来源中属于公有领域的内容。
  39. ^ Rothman, D. H. Atmospheric carbon dioxide levels for the last 500 million years. Proceedings of the National Academy of Sciences. 2002, 99 (7): 4167–4171. Bibcode:2002PNAS...99.4167R. PMC 123620可免费查阅. PMID 11904360. doi:10.1073/pnas.022055499可免费查阅. 
  40. ^ Carpinteri, Alberto; Niccolini, Gianni. Correlation between the Fluctuations in Worldwide Seismicity and Atmospheric Carbon Pollution. Sci. 2019, 1: 17. doi:10.3390/sci1010017可免费查阅.  Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License Archived copy. [2020-07-05]. (原始内容存档于2017-10-16). 
  41. ^ Rothman, Daniel. Earth's carbon cycle: A mathematical perspective. Bulletin of the American Mathematical Society. January 2015, 52 (1): 47–64 [2024-01-28]. ISSN 0273-0979. doi:10.1090/S0273-0979-2014-01471-5. hdl:1721.1/97900可免费查阅. (原始内容存档于2021-11-22) (英语). 
  42. ^ NASA Earth Observatory (2011-06-16). "The Slow Carbon Cycle". Archive页面存档备份,存于互联网档案馆). 公有领域 本文含有此来源中属于公有领域的内容。
  43. ^ 43.0 43.1 43.2 Ward, Nicholas D.; Bianchi, Thomas S.; Medeiros, Patricia M.; Seidel, Michael; Richey, Jeffrey E.; Keil, Richard G.; Sawakuchi, Henrique O. Where Carbon Goes when Water Flows: Carbon Cycling across the Aquatic Continuum. Frontiers in Marine Science. 2017, 4. doi:10.3389/fmars.2017.00007可免费查阅.  Modified material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License 互联网档案馆存档,存档日期2017-10-16..
  44. ^ Kerminen, Veli-Matti; Virkkula, Aki; Hillamo, Risto; Wexler, Anthony S.; Kulmala, Markku. Secondary organics and atmospheric cloud condensation nuclei production. Journal of Geophysical Research: Atmospheres. 2000, 105 (D7): 9255–9264. Bibcode:2000JGR...105.9255K. doi:10.1029/1999JD901203可免费查阅. 
  45. ^ Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M. Organic condensation: A vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics. 2011, 11 (8): 3865–3878. Bibcode:2011ACP....11.3865R. doi:10.5194/acp-11-3865-2011可免费查阅. 
  46. ^ Waterloo, Maarten J.; Oliveira, Sylvia M.; Drucker, Debora P.; Nobre, Antonio D.; Cuartas, Luz A.; Hodnett, Martin G.; Langedijk, Ivar; Jans, Wilma W. P.; Tomasella, Javier; De Araújo, Alessandro C.; Pimentel, Tania P.; Múnera Estrada, Juan C. Export of organic carbon in run-off from an Amazonian rainforest blackwater catchment. Hydrological Processes. 2006, 20 (12): 2581–2597. Bibcode:2006HyPr...20.2581W. S2CID 129377411. doi:10.1002/hyp.6217. 
  47. ^ Neu, Vania; Ward, Nicholas D.; Krusche, Alex V.; Neill, Christopher. Dissolved Organic and Inorganic Carbon Flow Paths in an Amazonian Transitional Forest. Frontiers in Marine Science. 2016, 3. S2CID 41290209. doi:10.3389/fmars.2016.00114可免费查阅. 
  48. ^ Baldock, J.A.; Masiello, C.A.; Gélinas, Y.; Hedges, J.I. Cycling and composition of organic matter in terrestrial and marine ecosystems. Marine Chemistry. 2004, 92 (1–4): 39–64. Bibcode:2004MarCh..92...39B. doi:10.1016/j.marchem.2004.06.016. 
  49. ^ Myers-Pigg, Allison N.; Griffin, Robert J.; Louchouarn, Patrick; Norwood, Matthew J.; Sterne, Amanda; Cevik, Basak Karakurt. Signatures of Biomass Burning Aerosols in the Plume of a Saltmarsh Wildfire in South Texas. Environmental Science & Technology. 2016, 50 (17): 9308–9314. Bibcode:2016EnST...50.9308M. PMID 27462728. doi:10.1021/acs.est.6b02132. 
  50. ^ Field, C. B.; Behrenfeld, M. J.; Randerson, J. T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science. 1998, 281 (5374): 237–240 [2024-01-28]. Bibcode:1998Sci...281..237F. PMID 9657713. doi:10.1126/science.281.5374.237. (原始内容存档于2018-09-25). 
  51. ^ Martens, Dean A.; Reedy, Thomas E.; Lewis, David T. Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology. 2004, 10 (1): 65–78 [2024-01-28]. Bibcode:2004GCBio..10...65M. S2CID 5019983. doi:10.1046/j.1529-8817.2003.00722.x. (原始内容存档于2023-08-06). 
  52. ^ Bose, Samar K.; Francis, Raymond C.; Govender, Mark; Bush, Tamara; Spark, Andrew. Lignin content versus syringyl to guaiacyl ratio amongst poplars. Bioresource Technology. 2009, 100 (4): 1628–1633. PMID 18954979. doi:10.1016/j.biortech.2008.08.046. 
  53. ^ Schlesinger, William H.; Andrews, Jeffrey A. Soil respiration and the global carbon cycle. Biogeochemistry. 2000, 48: 7–20. S2CID 94252768. doi:10.1023/A:1006247623877. 
  54. ^ Schmidt, Michael W. I.; Torn, Margaret S.; Abiven, Samuel; Dittmar, Thorsten; Guggenberger, Georg; Janssens, Ivan A.; Kleber, Markus; Kögel-Knabner, Ingrid; Lehmann, Johannes; Manning, David A. C.; Nannipieri, Paolo; Rasse, Daniel P.; Weiner, Steve; Trumbore, Susan E. Persistence of soil organic matter as an ecosystem property. Nature. 2011, 478 (7367): 49–56 [2024-01-28]. Bibcode:2011Natur.478...49S. PMID 21979045. S2CID 3461265. doi:10.1038/nature10386. (原始内容存档于2021-08-30). 
  55. ^ Lehmann, Johannes; Kleber, Markus. The contentious nature of soil organic matter. Nature. 2015, 528 (7580): 60–68. Bibcode:2015Natur.528...60L. PMID 26595271. S2CID 205246638. doi:10.1038/nature16069可免费查阅. 
  56. ^ Qualls, Robert G.; Haines, Bruce L. Biodegradability of Dissolved Organic Matter in Forest Throughfall, Soil Solution, and Stream Water. Soil Science Society of America Journal. 1992, 56 (2): 578–586. Bibcode:1992SSASJ..56..578Q. doi:10.2136/sssaj1992.03615995005600020038x. 
  57. ^ Grøn, Christian; Tørsløv, Jens; Albrechtsen, Hans-Jørgen; Jensen, Hanne Møller. Biodegradability of dissolved organic carbon in groundwater from an unconfined aquifer. Science of the Total Environment. 1992,. 117-118: 241–251. Bibcode:1992ScTEn.117..241G. doi:10.1016/0048-9697(92)90091-6. 
  58. ^ Pabich, Wendy J.; Valiela, Ivan; Hemond, Harold F. Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, U.S.A.. Biogeochemistry. 2001, 55 (3): 247–268. S2CID 140536437. doi:10.1023/A:1011842918260. 
  59. ^ Linsley, Ray K. Solutions Manual to Accompany Hydrology for Engineers. 1975. 
  60. ^ Horton, Robert E. The Rôle of infiltration in the hydrologic cycle. Transactions, American Geophysical Union. 1933, 14 (1): 446. Bibcode:1933TrAGU..14..446H. doi:10.1029/TR014i001p00446. 
  61. ^ Richey, Jeffrey E.; Melack, John M.; Aufdenkampe, Anthony K.; Ballester, Victoria M.; Hess, Laura L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature. 2002, 416 (6881): 617–620. Bibcode:2002Natur.416..617R. PMID 11948346. S2CID 4345881. doi:10.1038/416617a. 
  62. ^ Cole, J. J.; Prairie, Y. T.; Caraco, N. F.; McDowell, W. H.; Tranvik, L. J.; Striegl, R. G.; Duarte, C. M.; Kortelainen, P.; Downing, J. A.; Middelburg, J. J.; Melack, J. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems. 2007, 10: 172–185. S2CID 1728636. doi:10.1007/s10021-006-9013-8. 
  63. ^ 63.0 63.1 Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory; Hoover, Mark; Butman, David; Striegl, Robert; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Dürr, Hans; Meybeck, Michel; Ciais, Philippe; Guth, Peter. Global carbon dioxide emissions from inland waters. Nature. 2013, 503 (7476): 355–359. Bibcode:2013Natur.503..355R. PMID 24256802. S2CID 4460910. doi:10.1038/nature12760. 
  64. ^ Ward, Nicholas D.; Keil, Richard G.; Medeiros, Patricia M.; Brito, Daimio C.; Cunha, Alan C.; Dittmar, Thorsten; Yager, Patricia L.; Krusche, Alex V.; Richey, Jeffrey E. Degradation of terrestrially derived macromolecules in the Amazon River. Nature Geoscience. 2013, 6 (7): 530–533. Bibcode:2013NatGe...6..530W. doi:10.1038/ngeo1817. 
  65. ^ Myers-Pigg, Allison N.; Louchouarn, Patrick; Amon, Rainer M. W.; Prokushkin, Anatoly; Pierce, Kayce; Rubtsov, Alexey. Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: Implications for wildfire-stream metabolic linkages. Geophysical Research Letters. 2015, 42 (2): 377–385. Bibcode:2015GeoRL..42..377M. doi:10.1002/2014GL062762可免费查阅. 
  66. ^ Tranvik, Lars J.; Downing, John A.; Cotner, James B.; Loiselle, Steven A.; Striegl, Robert G.; Ballatore, Thomas J.; Dillon, Peter; Finlay, Kerri; Fortino, Kenneth; Knoll, Lesley B.; Kortelainen, Pirkko L.; Kutser, Tiit; Larsen, Soren.; Laurion, Isabelle; Leech, Dina M.; McCallister, S. Leigh; McKnight, Diane M.; Melack, John M.; Overholt, Erin; Porter, Jason A.; Prairie, Yves; Renwick, William H.; Roland, Fabio; Sherman, Bradford S.; Schindler, David W.; Sobek, Sebastian; Tremblay, Alain; Vanni, Michael J.; Verschoor, Antonie M.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography. 2009, 54 (6part2): 2298–2314. Bibcode:2009LimOc..54.2298T. doi:10.4319/lo.2009.54.6_part_2.2298可免费查阅. 
  67. ^ Bastviken, David; Cole, Jonathan; Pace, Michael; Tranvik, Lars. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles. 2004, 18 (4): n/a. Bibcode:2004GBioC..18.4009B. doi:10.1029/2004GB002238可免费查阅. 
  68. ^ Cooley, S. R.; Coles, V. J.; Subramaniam, A.; Yager, P. L. Seasonal variations in the Amazon plume-related atmospheric carbon sink. Global Biogeochemical Cycles. 2007, 21 (3): n/a. Bibcode:2007GBioC..21.3014C. doi:10.1029/2006GB002831可免费查阅. 
  69. ^ Subramaniam, A.; Yager, P. L.; Carpenter, E. J.; Mahaffey, C.; Bjorkman, K.; Cooley, S.; Kustka, A. B.; Montoya, J. P.; Sanudo-Wilhelmy, S. A.; Shipe, R.; Capone, D. G. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proceedings of the National Academy of Sciences. 2008, 105 (30): 10460–10465. PMC 2480616可免费查阅. PMID 18647838. S2CID 8889134. doi:10.1073/pnas.0710279105可免费查阅. 
  70. ^ 70.0 70.1 Cai, Wei-Jun. Estuarine and Coastal Ocean Carbon Paradox: CO2Sinks or Sites of Terrestrial Carbon Incineration?. Annual Review of Marine Science. 2011, 3: 123–145. Bibcode:2011ARMS....3..123C. PMID 21329201. doi:10.1146/annurev-marine-120709-142723. 
  71. ^ Livingston, R. J. Ecological Processes in Coastal and Marine Systems. Springer. 2012-12-06. ISBN 9781461591467. 
  72. ^ Dittmar, Thorsten; Lara, Rubén José; Kattner, Gerhard. River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters. Marine Chemistry. 2001, 73 (3–4): 253–271. Bibcode:2001MarCh..73..253D. doi:10.1016/s0304-4203(00)00110-9. 
  73. ^ Moore, W.S.; Beck, M.; Riedel, T.; Rutgers Van Der Loeff, M.; Dellwig, O.; Shaw, T.J.; Schnetger, B.; Brumsack, H.-J. Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: A decade of studies in the German Wadden Sea. Geochimica et Cosmochimica Acta. 2011, 75 (21): 6535–6555. Bibcode:2011GeCoA..75.6535M. doi:10.1016/j.gca.2011.08.037. 
  74. ^ Wehrli, Bernhard. Conduits of the carbon cycle. Nature. 2013, 503 (7476): 346–347. PMID 24256800. S2CID 205079291. doi:10.1038/503346a可免费查阅. 
  75. ^ Moran, Mary Ann; Kujawinski, Elizabeth B.; Stubbins, Aron; Fatland, Rob; Aluwihare, Lihini I.; Buchan, Alison; Crump, Byron C.; Dorrestein, Pieter C.; Dyhrman, Sonya T.; Hess, Nancy J.; Howe, Bill; Longnecker, Krista; Medeiros, Patricia M.; Niggemann, Jutta; Obernosterer, Ingrid; Repeta, Daniel J.; Waldbauer, Jacob R. Deciphering ocean carbon in a changing world. Proceedings of the National Academy of Sciences. 2016, 113 (12): 3143–3151. Bibcode:2016PNAS..113.3143M. PMC 4812754可免费查阅. PMID 26951682. S2CID 10255391. doi:10.1073/pnas.1514645113可免费查阅. 
  76. ^ 76.0 76.1 76.2 Gao, Yang; Jia, Junjie; Lu, Yao; Sun, Kun; Wang, Jing; Wang, Shuoyue. Carbon transportation, transformation, and sedimentation processes at the land-river-estuary continuum. Fundamental Research (Elsevier BV). 2022. ISSN 2667-3258. S2CID 251168582. doi:10.1016/j.fmre.2022.07.007可免费查阅.  Modified material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  77. ^ Schlünz, B.; Schneider, R. R. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates. International Journal of Earth Sciences (Springer Science and Business Media LLC). 2000-03-22, 88 (4): 599–606. Bibcode:2000IJEaS..88..599S. ISSN 1437-3254. S2CID 128411658. doi:10.1007/s005310050290. 
  78. ^ Blair, Neal E.; Leithold, Elana L.; Aller, Robert C. From bedrock to burial: The evolution of particulate organic carbon across coupled watershed-continental margin systems. Marine Chemistry. 2004, 92 (1–4): 141–156. Bibcode:2004MarCh..92..141B. doi:10.1016/j.marchem.2004.06.023. 
  79. ^ Bouchez, Julien; Beyssac, Olivier; Galy, Valier; Gaillardet, Jérôme; France-Lanord, Christian; Maurice, Laurence; Moreira-Turcq, Patricia. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology (Geological Society of America). 2010, 38 (3): 255–258. Bibcode:2010Geo....38..255B. ISSN 1943-2682. S2CID 53512466. doi:10.1130/g30608.1. 
  80. ^ Regnier, Pierre; Friedlingstein, Pierre; Ciais, Philippe; Mackenzie, Fred T.; et al. Anthropogenic perturbation of the carbon fluxes from land to ocean (PDF). Nature Geoscience (Springer Science and Business Media LLC). 2013-06-09, 6 (8): 597–607 [2024-01-28]. Bibcode:2013NatGe...6..597R. ISSN 1752-0894. S2CID 53418968. doi:10.1038/ngeo1830. (原始内容存档 (PDF)于2024-02-26). 
  81. ^ 81.0 81.1 Bauer, James E.; Cai, Wei-Jun; Raymond, Peter A.; Bianchi, Thomas S.; Hopkinson, Charles S.; Regnier, Pierre A. G. The changing carbon cycle of the coastal ocean. Nature (Springer Science and Business Media LLC). 2013-12-04, 504 (7478): 61–70 [2024-01-28]. Bibcode:2013Natur.504...61B. ISSN 0028-0836. PMID 24305149. S2CID 4399374. doi:10.1038/nature12857. (原始内容存档于2023-05-21). 
  82. ^ Cai, Wei-Jun. Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of Terrestrial Carbon Incineration?. Annual Review of Marine Science (Annual Reviews). 2011-01-15, 3 (1): 123–145. Bibcode:2011ARMS....3..123C. ISSN 1941-1405. PMID 21329201. doi:10.1146/annurev-marine-120709-142723. 
  83. ^ Galy, Valier; Peucker-Ehrenbrink, Bernhard; Eglinton, Timothy. Global carbon export from the terrestrial biosphere controlled by erosion. Nature (Springer Science and Business Media LLC). 2015, 521 (7551): 204–207. Bibcode:2015Natur.521..204G. ISSN 0028-0836. PMID 25971513. S2CID 205243485. doi:10.1038/nature14400. 
  84. ^ Sigman DM & GH Haug. 2006. The biological pump in the past. In: Treatise on Geochemistry; vol. 6, (ed.). Pergamon Press, pp. 491–528
  85. ^ Sanders, Richard; Henson, Stephanie A.; Koski, Marja; de la Rocha, Christina L.; Painter, Stuart C.; Poulton, Alex J.; Riley, Jennifer; Salihoglu, Baris; Visser, Andre; Yool, Andrew; Bellerby, Richard; Martin, Adrian P. The Biological Carbon Pump in the North Atlantic. Progress in Oceanography. 2014, 129: 200–218. Bibcode:2014PrOce.129..200S. doi:10.1016/j.pocean.2014.05.005. 
  86. ^ Boyd, Philip W. Toward quantifying the response of the oceans' biological pump to climate change. Frontiers in Marine Science. 2015, 2. S2CID 16787695. doi:10.3389/fmars.2015.00077可免费查阅. 
  87. ^ Basu, Samarpita; MacKey, Katherine. Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate. Sustainability. 2018, 10 (3): 869. doi:10.3390/su10030869可免费查阅. 
  88. ^ Steinberg, Deborah; Goldthwait, Sarah; Hansell, Dennis. Zooplankton vertical migration and the active transport of dissolved organic and inorganic nitrogen in the Sargasso Sea. Deep-Sea Research Part I. 2002, 49 (8): 1445–1461. Bibcode:2002DSRI...49.1445S. CiteSeerX 10.1.1.391.7622可免费查阅. ISSN 0967-0637. doi:10.1016/S0967-0637(02)00037-7. 
  89. ^ 89.0 89.1 Ducklow, H.W., Steinberg, D.K. and Buesseler, K.O. (2001) "Upper Ocean Carbon Export and the Biological Pump". Oceanography, 14(4): 50–58. doi:10.5670/oceanog.2001.06. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License 互联网档案馆存档,存档日期2017-10-16..
  90. ^ De La Rocha C.L. (2006) "The Biological Pump". In: Treatise on Geochemistry; vol. 6, Pergamon Press, pp. 83–111.
  91. ^ Wong, Kevin; Mason, Emily; Brune, Sascha; East, Madison; Edmonds, Marie; Zahirovic, Sabin. Deep Carbon Cycling over the Past 200 Million Years: A Review of Fluxes in Different Tectonic Settings. Frontiers in Earth Science. 2019, 7: 263. Bibcode:2019FrEaS...7..263W. S2CID 204027259. doi:10.3389/feart.2019.00263可免费查阅. 
  92. ^ The Deep Carbon Cycle and our Habitable Planet | Deep Carbon Observatory. deepcarbon.net. [2019-02-19]. (原始内容存档于2020-07-27). 
  93. ^ Wilson, Mark. Where do Carbon Atoms Reside within Earth's Mantle?. Physics Today. 2003, 56 (10): 21–22. Bibcode:2003PhT....56j..21W. doi:10.1063/1.1628990. 
  94. ^ Dasgupta, Rajdeep. From Magma Ocean to Crustal Recycling: Earth's Deep Carbon Cycle. 2011-12-10 [2019-03-09]. (原始内容存档于2016-04-24). 
  95. ^ Carbon cycle reaches Earth's lower mantle: Evidence of carbon cycle found in 'superdeep' diamonds From Brazil. ScienceDaily. [2019-02-06]. (原始内容存档于2020-11-11). 
  96. ^ Stagno, V.; Frost, D. J.; McCammon, C. A.; Mohseni, H.; Fei, Y. The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contributions to Mineralogy and Petrology. 2015-02-05, 169 (2): 16. Bibcode:2015CoMP..169...16S. ISSN 1432-0967. S2CID 129243867. doi:10.1007/s00410-015-1111-1. 
  97. ^ 97.0 97.1 Fiquet, Guillaume; Guyot, François; Perrillat, Jean-Philippe; Auzende, Anne-Line; Antonangeli, Daniele; Corgne, Alexandre; Gloter, Alexandre; Boulard, Eglantine. New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences. 2011-03-29, 108 (13): 5184–5187. Bibcode:2011PNAS..108.5184B. ISSN 0027-8424. PMC 3069163可免费查阅. PMID 21402927. doi:10.1073/pnas.1016934108可免费查阅. 
  98. ^ Dorfman, Susannah M.; Badro, James; Nabiei, Farhang; Prakapenka, Vitali B.; Cantoni, Marco; Gillet, Philippe. Carbonate stability in the reduced lower mantle (PDF). Earth and Planetary Science Letters. 2018-05-01, 489: 84–91. Bibcode:2018E&PSL.489...84D. ISSN 0012-821X. OSTI 1426861. S2CID 134119145. doi:10.1016/j.epsl.2018.02.035. (原始内容存档 (PDF)于2021-07-18). 
  99. ^ Kelley, Katherine A.; Cottrell, Elizabeth. Redox Heterogeneity in Mid-Ocean Ridge Basalts as a Function of Mantle Source. Science. 2013-06-14, 340 (6138): 1314–1317. Bibcode:2013Sci...340.1314C. ISSN 0036-8075. PMID 23641060. S2CID 39125834. doi:10.1126/science.1233299可免费查阅. 
  100. ^ Kono, Yoshio; Sanloup, Chrystèle. Magmas Under Pressure | ScienceDirect. Elsevier Science. 2018-04-10 [2019-02-07]. ISBN 9780128113011. (原始内容存档于2021-02-02). 
  101. ^ Mao, Wendy L.; Liu, Zhenxian; Galli, Giulia; Pan, Ding; Boulard, Eglantine. Tetrahedrally coordinated carbonates in Earth's lower mantle. Nature Communications. 2015-02-18, 6: 6311. Bibcode:2015NatCo...6.6311B. ISSN 2041-1723. PMID 25692448. S2CID 205335268. arXiv:1503.03538可免费查阅. doi:10.1038/ncomms7311. 
  102. ^ Carmody, Laura; Genge, Matthew; Jones, Adrian P. Carbonate Melts and Carbonatites. Reviews in Mineralogy and Geochemistry. 2013-01-01, 75 (1): 289–322. Bibcode:2013RvMG...75..289J. ISSN 1529-6466. S2CID 49365059. doi:10.2138/rmg.2013.75.10. 
  103. ^ Dasgupta, Rajdeep; Hirschmann, Marc M. The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters. 2010-09-15, 298 (1): 1–13. Bibcode:2010E&PSL.298....1D. ISSN 0012-821X. doi:10.1016/j.epsl.2010.06.039. 
  104. ^ Frost, Daniel J.; McCammon, Catherine A. The Redox State of Earth's Mantle. Annual Review of Earth and Planetary Sciences. 2008, 36: 389–420. Bibcode:2008AREPS..36..389F. doi:10.1146/annurev.earth.36.031207.124322. 
  105. ^ Does Earth's Core Host a Deep Carbon Reservoir? | Deep Carbon Observatory. deepcarbon.net. [2019-03-09]. (原始内容存档于27 July 2020). 
  106. ^ Li, Jie; Chow, Paul; Xiao, Yuming; Alp, E. Ercan; Bi, Wenli; Zhao, Jiyong; Hu, Michael Y.; Liu, Jiachao; Zhang, Dongzhou. Hidden carbon in Earth's inner core revealed by shear softening in dense Fe7C3. Proceedings of the National Academy of Sciences. 2014-12-16, 111 (50): 17755–17758. Bibcode:2014PNAS..11117755C. ISSN 0027-8424. PMC 4273394可免费查阅. PMID 25453077. doi:10.1073/pnas.1411154111可免费查阅. 
  107. ^ Li, Jie; Chow, Paul; Xiao, Yuming; Alp, E. Ercan; Bi, Wenli; Zhao, Jiyong; Hu, Michael Y.; Liu, Jiachao; Zhang, Dongzhou. Hidden carbon in Earth's inner core revealed by shear softening in dense Fe7C3. Proceedings of the National Academy of Sciences. 2014-12-16, 111 (50): 17755–17758. Bibcode:2014PNAS..11117755C. ISSN 0027-8424. PMC 4273394可免费查阅. PMID 25453077. doi:10.1073/pnas.1411154111可免费查阅. 
  108. ^ Overview of greenhouse gases. U.S. Environmental Protection Agency. 2015-12-23 [2020-11-02]. (原始内容存档于2016-08-12). 
  109. ^ 109.0 109.1 The known unknowns of plastic pollution. The Economist. 2018-03-03 [2018-06-17]. (原始内容存档于2018-05-14). 
  110. ^ Overview of greenhouse gases. U.S. Environmental Protection Agency. 2015-12-23 [2020-11-02]. (原始内容存档于2016-08-12). 
  111. ^ 111.0 111.1 111.2 Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will. Analytically tractable climate–carbon cycle feedbacks under 21st century anthropogenic forcing. Earth System Dynamics. 2018, 9 (2): 507–523. Bibcode:2018ESD.....9..507L. doi:10.5194/esd-9-507-2018可免费查阅.  Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License 互联网档案馆存档,存档日期2017-10-16..
  112. ^ Takahashi, Taro; Sutherland, Stewart C.; Sweeney, Colm; Poisson, Alain; Metzl, Nicolas; Tilbrook, Bronte; Bates, Nicolas; Wanninkhof, Rik; Feely, Richard A.; Sabine, Christopher; Olafsson, Jon; Nojiri, Yukihiro. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II: Topical Studies in Oceanography. 2002, 49 (9–10): 1601–1622. Bibcode:2002DSRII..49.1601T. doi:10.1016/S0967-0645(02)00003-6. 
  113. ^ Orr, James C.; Fabry, Victoria J.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Feely, Richard A.; Gnanadesikan, Anand; Gruber, Nicolas; Ishida, Akio; Joos, Fortunat; Key, Robert M.; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard; Monfray, Patrick; Mouchet, Anne; Najjar, Raymond G.; Plattner, Gian-Kasper; Rodgers, Keith B.; Sabine, Christopher L.; Sarmiento, Jorge L.; Schlitzer, Reiner; Slater, Richard D.; Totterdell, Ian J.; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms (PDF). Nature. 2005, 437 (7059): 681–686. Bibcode:2005Natur.437..681O. PMID 16193043. S2CID 4306199. doi:10.1038/nature04095. (原始内容存档 (PDF)于2019-04-26). 
  114. ^ Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; et al. Global Carbon Budget 2016. Earth System Science Data. 2016, 8 (2): 605–649. Bibcode:2016ESSD....8..605L. doi:10.5194/essd-8-605-2016可免费查阅. 
  115. ^ Intergovernmental Panel On Climate Change (编). Carbon and Other Biogeochemical Cycles. Climate Change 2013 - the Physical Science Basis. Cambridge University Press. 2014: 465–570. ISBN 9781107415324. doi:10.1017/CBO9781107415324.015. hdl:11858/00-001M-0000-0023-E34E-5. 
  116. ^ Joos, F.; Roth, R.; Fuglestvedt, J. S.; Peters, G. P.; Enting, I. G.; von Bloh, W.; Brovkin, V.; Burke, E. J.; Eby, M.; Edwards, N. R.; Friedrich, T.; Frölicher, T. L.; Halloran, P. R.; Holden, P. B.; Jones, C.; Kleinen, T.; MacKenzie, F. T.; Matsumoto, K.; Meinshausen, M.; Plattner, G.-K.; Reisinger, A.; Segschneider, J.; Shaffer, G.; Steinacher, M.; Strassmann, K.; Tanaka, K.; Timmermann, A.; Weaver, A. J. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics. 2013, 13 (5): 2793–2825. Bibcode:2013ACP....13.2793J. doi:10.5194/acp-13-2793-2013可免费查阅. 
  117. ^ Hausfather, Zeke; Betts, Richard. Analysis: How 'carbon-cycle feedbacks' could make global warming worse. Carbon Brief. 2020-04-14 [2022-01-04]. (原始内容存档于2020-04-16) (英语). 
  118. ^ IPCC (2007) 7.4.5 Minerals 互联网档案馆存档,存档日期2016-05-25. in Climate Change 2007: Working Group III: Mitigation of Climate Change,
  119. ^ Buis, Alan; Ramsayer, Kate; Rasmussen, Carol. A Breathing Planet, Off Balance. NASA. 2015-11-12 [2015-11-13]. (原始内容存档于2015-11-14). 
  120. ^ Audio (66:01) - NASA News Conference - Carbon & Climate Telecon. NASA. 2015-11-12 [2015-11-12]. (原始内容存档于2015-11-17). 
  121. ^ St. Fleur, Nicholas. Atmospheric Greenhouse Gas Levels Hit Record, Report Says. The New York Times. 2015-11-10 [2015-11-11]. (原始内容存档于2015-11-11). 
  122. ^ Ritter, Karl. UK: In 1st, global temps average could be 1 degree C higher. AP News. 2015-11-09 [2015-11-11]. (原始内容存档于2015-11-17). 
  123. ^ 123.0 123.1 Morse, John W.; Morse, John W. Autor; Morse, John W.; MacKenzie, F. T.; MacKenzie, Fred T. Chapter 9 the Current Carbon Cycle and Human Impact. Geochemistry of Sedimentary Carbonates. Developments in Sedimentology 48. 1990: 447–510. ISBN 9780444873910. doi:10.1016/S0070-4571(08)70338-8. 
  124. ^ Figure 8.SM.4 (PDF). Intergovernmental Panel on Climate Change Fifth Assessment Report. : 8SM-16. (原始内容存档 (PDF)于2019-03-13). 
  125. ^ Archer, David. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth and Planetary Sciences. 2009, 37 (1): 117–34 [2024-01-28]. Bibcode:2009AREPS..37..117A. doi:10.1146/annurev.earth.031208.100206. hdl:2268/12933. (原始内容存档于2021-02-24). 
  126. ^ Joos, F.; Roth, R.; Fuglestvedt, J.D.; et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics. 2013, 13 (5): 2793–2825 [2024-01-28]. doi:10.5194/acpd-12-19799-2012可免费查阅. hdl:20.500.11850/58316可免费查阅. (原始内容存档于2020-07-22). 
  127. ^ Butler, J.; Montzka, S. The NOAA Annual Greenhouse Gas Index (AGGI). NOAA Global Monitoring Laboratory/Earth System Research Laboratories. 2020 [2024-01-28]. (原始内容存档于2013-09-22). 
  128. ^ Sciance, Fred. The Transition from HFC- 134a to a Low -GWP Refrigerant in Mobile Air Conditioners HFO -1234yf (PDF). General Motors Public Policy Center. 2013-10-29 [2018-08-01]. (原始内容存档 (PDF)于2015-10-15). 

外部链接

[编辑]